Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
Summary:
Some passes may open up opportunities for optimizations, leaving empty
lifetime start/end ranges. For example, with the following code:
void foo(char *, char *);
void bar(int Size, bool flag) {
for (int i = 0; i < Size; ++i) {
char text[1];
char buff[1];
if (flag)
foo(text, buff); // BBFoo
}
}
the loop unswitch pass will create 2 versions of the loop, one with
flag==true, and the other one with flag==false, but always leaving
the BBFoo basic block, with lifetime ranges covering the scope of the for
loop. Simplify CFG will then remove BBFoo in the case where flag==false,
but will leave the lifetime markers.
This patch teaches InstCombine to remove trivially empty lifetime marker
ranges, that is ranges ending right after they were started (ignoring
debug info or other lifetime markers in the range).
This fixes PR24598: excessive compile time after r234581.
Reviewers: reames, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13305
llvm-svn: 249018