This allows us to delinerize code such as:
A[][n]
for (i
for (j
A[i][n-j-1] = ...
which would previously have been delinearize to an access A[i+1][-j-1].
To recover the correct access we apply the piecewise expression:
{ A[i][j] -> A[i-1][i+N]: i < 0; A[i][j] -> A[i][i]: i >= 0}
This approach generalizes to higher dimensions.
llvm-svn: 233566
This will strip the constant factor of a parameter befor we add it to
the SCoP. As a result the access functions are simplified, e.g., for
the attached test case.
llvm-svn: 233501
This test case was supposed to test the range analysis but it became just
another delinearization test case after enabling delinearization.
Suggested-by: Johannes Doerfert
llvm-svn: 231599
If a scalar was defined and used only in a non-affine subregion we do
not need to model the accesses. However, if the scalar was defined
inside the region and escapes the region we have to model the access.
The same is true if the scalar was defined outside and used inside the
region.
llvm-svn: 230960
This allows us to model non-affine regions in the SCoP representation.
SCoP statements can now describe either basic blocks or non-affine
regions. In the latter case all accesses in the region are accumulated
for the statement and write accesses, except in the entry, have to be
marked as may-write.
Differential Revision: http://reviews.llvm.org/D7846
llvm-svn: 230329
Scops that only read seem generally uninteresting and scops that only write are
most likely initializations where there is also little to optimize. To not
waste compile time we bail early.
Differential Revision: http://reviews.llvm.org/D7735
llvm-svn: 229820
These write are important as they will force the scheduling and code
generation of an otherwise trivial statement and also impose an order of
execution needed to guarantee the correct final value for a scalar in a loop.
Added test case modeled after ClamAV/clamscan.
llvm-svn: 228847
This allows us to model PHI nodes in the polyhedral description
without demoting them. The modeling however will result in the
same accesses as the demotion would have introduced.
Differential Revision: http://reviews.llvm.org/D7415
llvm-svn: 228433
The max loop depth was incorrectly computed for scops that contain a
block from a loop but do not contain the entire loop. We need to
check that the full loop is contained in the region when computing
the max loop depth.
These scops occur when a region containing an inner loop is expanded
to include some blocks from the outer loop, but it cannot be fully
expanded to contain the outer loop because the region containing the
outer loop is invalid.
Differential Revision: http://reviews.llvm.org/D6913
llvm-svn: 225812
This support is still incomplete and consequently hidden behind a switch that
needs to be enabled. One problem is ATM that we incorrectly interpret very large
unsigned values as negative values even if used in an unsigned comparision.
llvm-svn: 225480
Schedule dimensions that have the same constant value accross all statements do
not carry any information, but due to the increased dimensionality of the
schedule cost compile time. To not pay this cost, we remove constant dimensions
if possible.
llvm-svn: 225067
Isl now specifically marks modulo operations that are compared against zero.
They can be implemented with the C/LLVM remainder operation.
We also update a couple of test cases where the output of isl has slightly
changed.
llvm-svn: 223607
SCEV based code generation has been the default for two weeks after having
been tested for a long time. We now drop the support the non-scev-based code
generation.
llvm-svn: 222978
In case a GEP instruction references into a fixed size array e.g., an access
A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts
always compute values that are within array bounds. We now derive the set of
parameter values for which all accesses are within bounds and add the assumption
that the scop is only every executed with this set of parameter values.
Example:
void foo(float A[][20], long n, long m {
for (long i = 0; i < n; i++)
for (long j = 0; j < m; j++)
A[i][j] = ...
This loop yields out-of-bound accesses if m is at least 20 and at the same time
at least one iteration of the outer loop is executed. Hence, we assume:
n <= 0 or m <= 20.
Doing so simplifies the dependence analysis problem, allows us to perform
more optimizations and generate better code.
TODO: The location where the GEP instruction is executed is not necessarily the
location where the memory is actually accessed. As a result scanning for GEP[s]
is imprecise. Even though this is not a correctness problem, this imprecision
may result in missed optimizations or non-optimal run-time checks.
In polybench where this mismatch between parametric loop bounds and fixed size
arrays is common, we see with this patch significant reductions in compile time
(up to 50%) and execution time (up to 70%). We see two significant compile time
regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression
(trmm). Both regressions arise due to additional optimizations that have been
enabled by this patch. They can be addressed in subsequent commits.
http://reviews.llvm.org/D6369
llvm-svn: 222754
This patch changes the RegionSet type used in ScopDetection from a
std::set to a llvm::SetVector. The reason for the change is to
ensure deterministic output when printing the result of the
analysis. We had a windows buildbot failure for the modified test
because the output was coming in a different order.
Only one test case needed to be modified for this change. We could
use CHECK-DAG directives instead of CHECK in the analysis test cases
because the actual order of scops does not matter, but I think that
change should be done in a separate patch that modifies all the
appliciable tests. I simply modified the test to reflect the
expected deterministic output.
Differential Revision: http://reviews.llvm.org/D5897
llvm-svn: 220423
We use a parametric abstraction of the domain to split alias groups
if accesses cannot be executed under the same parameter evaluation.
The two test cases check that we can remove alias groups if the
pointers which might alias are never accessed under the same parameter
evaluation and that the minimal/maximal accesses are not global but
with regards to the parameter evaluation.
Differential Revision: http://reviews.llvm.org/D5436
llvm-svn: 218758
If there are multiple read only base addresses in an alias group
we can split it into multiple alias groups each with only one
read only access. This way we might reduce the number of
comparisons significantly as it grows linear in the number of
alias groups but exponential in their size.
Differential Revision: http://reviews.llvm.org/D5435
llvm-svn: 218757
If too many parameters are involved in accesses used to create RTCs
we might end up with enormous compile times and RTC expressions.
The reason is that the lexmin/lexmax is dependent on all these
parameters and isl might need to create a case for every "ordering"
of them (e.g., p0 <= p1 <= p2, p1 <= p0 <= p2, ...).
The exact number of parameters allowed in accesses is defined by the
command line option -polly-rtc-max-parameters=XXX and set by default
to 8.
Differential Revision: http://reviews.llvm.org/D5500
llvm-svn: 218566
This change will build all alias groups (minimal/maximal accesses
to possible aliasing base pointers) we have to check before
we can assume an alias free environment. It will also use these
to create Runtime Alias Checks (RTC) in the ISL code generation
backend, thus allow us to optimize SCoPs despite possibly aliasing
pointers when this backend is used.
This feature will be enabled for the isl code generator, e.g.,
--polly-code-generator=isl, but disabled for:
- The cloog code generator (still the default).
- The case delinearization is enabled.
- The case non-affine accesses are allowed.
llvm-svn: 218046
Even though we previously correctly detected the multi-dimensional access
pattern for accesses with a certain base address, we only delinearized
non-affine accesses to this address. Affine accesses have not been touched and
remained as single dimensional accesses. The result was an inconsistent
description of accesses to the same array, with some being one dimensional and
some being multi-dimensional.
This patch ensures that all accesses are delinearized with the same
dimensionality as soon as a single one of them has been detected as non-affine.
While writing this patch, it became evident that the options
-polly-allow-nonaffine and -polly-detect-keep-going have not been properly
supported in case delinearization has been turned on. This patch adds relevant
test coverage and addresses these issues as well. We also added some more
documentation to the functions that are modified in this patch.
This fixes llvm.org/PR20123
Differential Revision: http://reviews.llvm.org/D5329
llvm-svn: 217728
We now verify that such functions are correctly detected even in combination
with delinearization. This change is added to ensure we have good test coverage
for the subsequent delinearization fix.
We also remove unnecessary instructions from the test case.
llvm-svn: 217664
In Polly we used to have a mix of test cases, some that used 'opt %s' and others
that used 'opt < %s'. We now change all to use 'opt < %s'. Piping in test files
is preferable as it does prevent temporary files to be written to disk. This
brings us in line with what is usus in LLVM.
llvm-svn: 216816
This reverts commit 215684. The intention of the commit is great, but
unfortunately it seems to be the cause of 14 LNT test suite failures:
http://lab.llvm.org:8011/builders/perf-x86_64-penryn-O3-polly/builds/116
To make our buildbots and performance testers green until this issue is solved,
we temporarily revert this commit.
llvm-svn: 215816
The support is limited to signed modulo access and condition
expressions with a constant right hand side, e.g., A[i % 2] or
A[i % 9]. Test cases are modified according to this new feature and
new test cases are added.
Differential Revision: http://reviews.llvm.org/D4843
llvm-svn: 215684
There is no needed for neither 1-dimensional nor higher dimensional arrays to
require positive offsets in the outermost array dimension.
We originally introduced this assumption with the support for delinearizing
multi-dimensional arrays.
llvm-svn: 214665