The variables used in atomic construct should be captured in outer
task-based regions implicitly. Otherwise, the compiler will crash trying
to find the address of the local variable.
Differential Revision: https://reviews.llvm.org/D92682
Compiler needs to convert some of the loop iteration
variables/conditions to different types for better codegen and it may
lead to spurious warning messages about implicit signed/unsigned
conversions.
Differential Revision: https://reviews.llvm.org/D92655
OpenMPIRBuilder::createParallel outlines the body region of the parallel
construct into a new function that accepts any value previously defined outside
the region as a function argument. This function is called back by OpenMP
runtime function __kmpc_fork_call, which expects trailing arguments to be
pointers. If the region uses a value that is not of a pointer type, e.g. a
struct, the produced code would be invalid. In such cases, make createParallel
emit IR that stores the value on stack and pass the pointer to the outlined
function instead. The outlined function then loads the value back and uses as
normal.
Reviewed By: jdoerfert, llitchev
Differential Revision: https://reviews.llvm.org/D92189
The dependency mechanism for C has been implemented, and we have rolled out
this to all internal users, didn't see crashy issues, we consider it is stable
enough.
Differential Revision: https://reviews.llvm.org/D89046
After fix for PR48174 the base pointer for pointer-based
array-sections/array-subscripts will be emitted as `&ptr[idx]`, but
actually it should be just `ptr`, i.e. the address stored in the ponter
to point correctly to the beginning of the array. Currently it may lead
to a crash in the runtime.
Differential Revision: https://reviews.llvm.org/D91805
Summary:
Add support for passing source locations to libomptarget runtime functions using the ident_t struct present in the rest of the libomp API. This will allow the runtime system to give much more insightful error messages and debugging values.
Reviewers: jdoerfert grokos
Differential Revision: https://reviews.llvm.org/D87946
Summary:
This patch adds support for passing in the original delcaration name in the source file to the libomptarget runtime. This will allow the runtime to provide more intelligent debugging messages. This patch takes the original expression parsed from the OpenMP map / update clause and provides a textual representation if it was explicitly mapped, otherwise it takes the name of the variable declaration as a fallback. The information in passed to the runtime in a global array of strings that matches the existing ident_t source location strings using ";name;filename;column;row;;"
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D89802
The compiler should treat array subscript with base pointer as a first
pointer in complex data, it is used only for member expression with base
pointer.
Differential Revision: https://reviews.llvm.org/D91660
If the variable is implicitly firstprivatized in the inner task-based
region, it also must be firstprivatized in outer task-based regions.
Previously firstprivates were captured in tasks but later it was
optimized to reduce the memory usage. But still need to mark such
variables as implicit firstprivate in outer tasks.
Differential Revision: https://reviews.llvm.org/D91627
If the data member pointer is mapped, the compiler tries to optimize the
mapping of such data by discarding explicit mapping flags and trying to
emit combined data instead. In some cases, this optimization is not
quite correctly implemented and it leads to a program crash at the
runtime. Instead, if the data member is mapped, just emit it as is and
do not emit combined mapping flags for it.
Differential Revision: https://reviews.llvm.org/D91552
arguments.
* Adds 'nonnull' and 'dereferenceable(N)' to 'this' pointer arguments
* Gates 'nonnull' on -f(no-)delete-null-pointer-checks
* Introduces this-nonnull.cpp and microsoft-abi-this-nullable.cpp tests to
explicitly test the behavior of this change
* Refactors hundreds of over-constrained clang tests to permit these
attributes, where needed
* Updates Clang12 patch notes mentioning this change
Reviewed-by: rsmith, jdoerfert
Differential Revision: https://reviews.llvm.org/D17993
As Richard Smith pointed out in the review of D90123, both the C and C++
standard call it lvalue and rvalue, so let's stick to the same spelling
in Clang.
Need to check if there are map types for the components before trying to
access them when trying to modify type mappings for combined partial
mappings.
Differential Revision: https://reviews.llvm.org/D91370
In order not to modify the `tgt_target_data_update` information but still be
able to pass the extra information for non-contiguous map item (offset,
count, and stride for each dimension), this patch overload `arg` when
the maptype is set as `OMP_MAP_DESCRIPTOR`. The origin `arg` is for
passing the pointer information, however, the overloaded `arg` is an
array of descriptor_dim:
struct descriptor_dim {
int64_t offset;
int64_t count;
int64_t stride
};
and the array size is the same as dimension size. In addition, since we
have count and stride information in descriptor_dim, we can replace/overload the
`arg_size` parameter by using dimension size.
For supporting `stride` in array section, we use a dummy dimension in
descriptor to store the unit size. The formula for counting the stride
in dimension D_n: `unit size * (D_0 * D_1 ... * D_n-1) * D_n.stride`.
Demonstrate how it works:
```
double arr[3][4][5];
D0: { offset = 0, count = 1, stride = 8 } // offset, count, dimension size always be 0, 1, 1 for this extra dimension, stride is the unit size
D1: { offset = 0, count = 2, stride = 8 * 1 * 2 = 16 } // stride = unit size * (product of dimension size of D0) * D1.stride = 4 * 1 * 2 = 8
D2: { offset = 2, count = 2, stride = 8 * (1 * 5) * 1 = 40 } // stride = unit size * (product of dimension size of D0, D1) * D2.stride = 4 * 5 * 1 = 20
D3: { offset = 0, count = 2, stride = 8 * (1 * 5 * 4) * 2 = 320 } // stride = unit size * (product of dimension size of D0, D1, D2) * D3.stride = 4 * 25 * 2 = 200
// X here means we need to offload this data, therefore, runtime will transfer
// data from offset 80, 96, 120, 136, 400, 416, 440, 456
// Runtime patch: https://reviews.llvm.org/D82245
// OOOOO OOOOO OOOOO
// OOOOO OOOOO OOOOO
// XOXOO OOOOO XOXOO
// XOXOO OOOOO XOXOO
```
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84192
Since C++11, the C++ standard has a forward progress guarantee
[intro.progress], so all such functions must have the `mustprogress`
requirement. In addition, from C11 and onwards, loops without a non-zero
constant conditional or no conditional are also required to make
progress (C11 6.8.5p6). This patch implements these attribute deductions
so they can be used by the optimization passes.
Differential Revision: https://reviews.llvm.org/D86841
Clang now asserts for the below case:
```
void clang::CodeGen::CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata(): Assertion `std::get<0>(E) && "All ordered entries must exist!"' failed.
```
The reason why Clang hit the assert is because in
`emitTargetDataCalls`, both `BeginThenGen` and `BeginElseGen` call
`registerTargetRegionEntryInfo` and try to register the Entry in
OffloadEntriesTargetRegion with same key. If changing the expression in
if clause to any constant expression, then the assert disappear. (https://godbolt.org/z/TW7haj)
The assert itself is to avoid
user from accessing elements out of bound inside `OrderedEntries` in
`createOffloadEntriesAndInfoMetadata`.
In this patch, I add a check in `registerTargetRegionEntryInfo` to avoid
register the target region more than once.
A test case that triggers assert: https://godbolt.org/z/4cnGW8
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D90704
Previously we added support for target nowait, but target data nowait
has not been supported yet. In this patch, target data nowait will also be
wrapped into a task.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90099
[libomptarget][nvptx] Undef, weak shared variables
Shared variables on nvptx, and LDS on amdgcn, are uninitialized at
the start of kernel execution. Therefore create the variables with
undef instead of zeros, motivated in part by the amdgcn back end
rejecting LDS+initializer.
Common is zero initialized, which seems incompatible with shared. Thus
change them to weak, following the direction of
https://reviews.llvm.org/rG7b3eabdcd215
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90248
Summary:
This patch adds support for passing in the original delcaration name in the
source file to the libomptarget runtime. This will allow the runtime to provide
more intelligent debugging messages. This patch takes the original expression
parsed from the OpenMP map / update clause and provides a textual
representation if it was explicitly mapped, otherwise it takes the name of the
variable declaration as a fallback. The information in passed to the runtime in
a global array of strings that matches the existing ident_t source location
strings using ";name;filename;column;row;;". See
clang/test/OpenMP/target_map_names.cpp for an example of the generated output
for a given map clause.
Reviewers: jdoervert
Differential Revision: https://reviews.llvm.org/D89802
In current implementation, if it requires an outer task, the mapper array will be privatized no matter whether it has mapper. In fact, when there is no mapper, the mapper array only contains number of nullptr. In the libomptarget, the use of mapper array is `if (mappers_array && mappers_array[i])`, which means we can directly set mapper array to nullptr if there is no mapper. This can avoid unnecessary data copy.
In this patch, the data privatization will not be emitted if the mapper array is nullptr. When it comes to the emit of task body, the nullptr will be used directly.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90101
The changes made in D88594 caused the test OpenMP/driver.c to fail on a 32-bit host becuase it was offloading to a 64-bit architecture by default. The offloading test was moved to a new file and a feature was added to the lit config to check for a 64-bit host.
Reviewed By: daltenty
Differential Revision: https://reviews.llvm.org/D89904
for which it matters.
This is a step towards separating checking for a constant initializer
(in which std::is_constant_evaluated returns true) and any other
evaluation of a variable initializer (in which it returns false).
The changes made in D88594 caused the test OpenMP/driver.c to fail on a 32-bit host becuase it was offloading to a 64-bit architecture by default. The offloading test was moved to a new file and a feature was added to the lit config to check for a 64-bit host.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89696
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
References to different declarations of the same entity aren't different
values, so shouldn't have different representations.
Recommit of e6393ee813, most recently
reverted in 9a33f027ac due to a bug caused
by ObjCInterfaceDecls not propagating availability attributes along
their redeclaration chains; that bug was fixed in
e2d4174e9c.
Summary:
Replace the OpenMP Runtime Library functions used in CGOpenMPRuntimeGPU
for OpenMP device code generation with ones in OMPKinds.def and use
OMPIRBuilder for generating runtime calls. This allows us to
consolidate more OpenMP code generation into the OMPIRBuilder. Future
additions to the GPU runtime functions should now go in OMPKinds.def
Reviewers: jdoerfert
Subscribers: aaron.ballman cfe-commits guansong llvm-commits sstefan1 yaxunl
Tags: #OpenMP #LLVM #clang
Differential Revision: https://reviews.llvm.org/D88430
Summary:
This patch adds an error to Clang that detects if OpenMP offloading is used
between two architectures with incompatible pointer sizes. This ensures that
the data mapping can be done correctly and solves an issue in code generation
generating the wrong size pointer.
Reviewer: jdoerfert
Subscribers: cfe-commits delcypher guansong llvm-commits sstefan1 yaxunl
Tags: #OpenMP #Clang
Differential Revision: https://reviews.llvm.org/D88594
Summary:
This patch adds an error to Clang that detects if OpenMP offloading is
used between two architectures with incompatible pointer sizes. This
ensures that the data mapping can be done correctly and solves an issue
in code generation generating the wrong size pointer. This patch adds a
new lit substitution, %omp_powerpc_triple that, if the system is 32-bit or
64-bit, sets the powerpc triple accordingly. This was required to fix
some OpenMP tests that automatically populated the target architecture.
Reviewers: jdoerfert
Subscribers: cfe-commits guansong sstefan1 yaxunl delcypher
Tags: OpenMP clang LLVM
Differential Revision: https://reviews.llvm.org/D88594
Failing tests on Arm due to the tests automatically populating
incomatible pointer width architectures. Reverting until the tests are
updated. Failing tests:
OpenMP/distribute_parallel_for_num_threads_codegen.cpp
OpenMP/distribute_parallel_for_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_num_threads_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_if_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_simd_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_simd_if_codegen.cpp
This reverts commit 90eaedda9b.
Failing tests on Arm due to the tests automatically populating
incomatible pointer width architectures. Reverting until the tests are
updated. Failing tests:
OpenMP/distribute_parallel_for_num_threads_codegen.cpp
OpenMP/distribute_parallel_for_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_num_threads_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_if_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_simd_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_simd_if_codegen.cpp
This reverts commit 9d2378b591.
Summary:
Replace the OpenMP Runtime Library functions used in CGOpenMPRuntimeGPU
for OpenMP device code generation with ones in OMPKinds.def and use
OMPIRBuilder for generating runtime calls. This allows us to consolidate
more OpenMP code generation into the OMPIRBuilder. This patch also
invalidates specifying target architectures with conflicting pointer
sizes.
Reviewers: jdoerfert
Subscribers: aaron.ballman cfe-commits guansong llvm-commits sstefan1 yaxunl
Tags: #OpenMP #Clang #LLVM
Differential Revision: https://reviews.llvm.org/D88430
Summary:
This patch adds an error to Clang that detects if OpenMP offloading is used
between two architectures with incompatible pointer sizes. This ensures that
the data mapping can be done correctly and solves an issue in code generation
generating the wrong size pointer.
Reviewer: jdoerfert
Subscribers:
Tags: #OpenMP #Clang
Differential Revision:
References to different declarations of the same entity aren't different
values, so shouldn't have different representations.
Recommit of e6393ee813 with fixed handling
for weak declarations. We now look for attributes on the most recent
declaration when determining whether a declaration is weak. (Second
recommit with further fixes for mishandling of weak declarations. Our
behavior here is fundamentally unsound -- see PR47663 -- but this
approach attempts to not make things worse.)
Previously for nowait target, CG emitted a function call to `__tgt_target_nowait`, etc. However, in OpenMP RTL, these functions just directly call the no-nowait version, which means nowait is not working as expected.
OpenMP specification says a target is acutally a target task, which is an untied and detachable task. It is natural to go to the direction that generates a task for a nowait target. However, OpenMP task has a problem that it must be within to a parallel region; otherwise the task will be executed immediately. As a result, if we directly wrap to a regular task, the `target nowait` outside of a parallel region is still a synchronous version.
In D77609, I added the support for unshackled task in OpenMP RTL. Basically, unshackled task is a task that is not bound to any parallel region. So all nowait target will be tranformed into an unshackled task. In order to distinguish from regular task, a new flag bit is set for unshackled task. This flag will be used by RTL for later process.
Since all target tasks are allocated via `__kmpc_omp_target_task_alloc`, and in current `libomptarget`, `__kmpc_omp_target_task_alloc` just calls `__kmpc_omp_task_alloc`. Therefore, we can modify the flag in `__kmpc_omp_target_task_alloc` so that we don't need to modify the FE too much. If users choose to opt out the feature, they just need to use a RTL w/o support of unshackled threads.
As a result, in this patch, the `target nowait` region is simply wrapped into a regular task. Later once we have RTL support for unshackled tasks, the wrapped tasks can be executed by unshackled threads w/o changes in the FE.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D78075
Need to fix a check for the variable if it is declared in the inner
OpenMP region to be able to firstprivatize it.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D88240