to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
It makes more sense to order FI-based memops in descending order when
the stack goes down. This allows offsets to stay "consecutive" and allow
easier pattern matching.
llvm-svn: 347906
Before this patch, the following stores in `merge_fail` would fail to be
merged, while they would get merged in `merge_ok`:
```
void use(unsigned long long *);
void merge_fail(unsigned key, unsigned index)
{
unsigned long long args[8];
args[0] = key;
args[1] = index;
use(args);
}
void merge_ok(unsigned long long *dst, unsigned a, unsigned b)
{
dst[0] = a;
dst[1] = b;
}
```
The reason is that `getMemOpBaseImmOfs` would return false for FI base
operands.
This adds support for this.
Differential Revision: https://reviews.llvm.org/D54847
llvm-svn: 347747
Currently, instructions doing memory accesses through a base operand that is
not a register can not be analyzed using `TII::getMemOpBaseRegImmOfs`.
This means that functions such as `TII::shouldClusterMemOps` will bail
out on instructions using an FI as a base instead of a register.
The goal of this patch is to refactor all this to return a base
operand instead of a base register.
Then in a separate patch, I will add FI support to the mem op clustering
in the MachineScheduler.
Differential Revision: https://reviews.llvm.org/D54846
llvm-svn: 347746
The machine scheduler currently biases register copies to/from
physical registers to be closer to their point of use / def to
minimize their live ranges. This change extends this to also physical
register assignments from immediate values.
This causes a reduction in reduction in overall register pressure and
minor reduction in spills and indirectly fixes an out-of-registers
assertion (PR39391).
Most test changes are from minor instruction reorderings and register
name selection changes and direct consequences of that.
Reviewers: MatzeB, qcolombet, myatsina, pcc
Subscribers: nemanjai, jvesely, nhaehnle, eraman, hiraditya,
javed.absar, arphaman, jfb, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D54218
llvm-svn: 346894
Previous version used type erasure through a `void* (*)()` pointer,
which triggered gcc warning and implied a lot of reinterpret_cast.
This version should make it harder to hit ourselves in the foot.
Differential revision: https://reviews.llvm.org/D54203
llvm-svn: 346522
Add a flag to dump the schedule DAG to the debug stream. This will be
used in upcoming commits to test schedule DAG mutations such as macro
fusion.
llvm-svn: 342589
- Instead of having both `SUnit::dump(ScheduleDAG*)` and
`ScheduleDAG::dumpNode(ScheduleDAG*)`, just keep the latter around.
- Add `ScheduleDAG::dump()` and avoid code duplication in several
places. Implement it for different ScheduleDAG variants.
- Add `ScheduleDAG::dumpNodeName()` in favor of the `SUnit::print()`
functions. They were only ever used for debug dumping and putting the
function into ScheduleDAG is consistent with the `dumpNode()` change.
llvm-svn: 342520
Summary:
Computing the remaining latency can be very expensive especially
on graphs of N nodes where the number of edges approaches N^2.
This reduces the compile time of a pathological case with the
AMDGPU backend from ~7.5 seconds to ~3 seconds. This test case has
a basic block with 2655 stores, each with somewhere between 500
and 1500 successors and predecessors.
Reviewers: atrick, MatzeB, airlied, mareko
Reviewed By: mareko
Subscribers: tpr, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D50486
llvm-svn: 340346
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.
This patch has no new test case. I have run regression test and there is
no difference in regression test.
Differential Revision: https://reviews.llvm.org/D45342
Patch by Hsiangkai Wang.
llvm-svn: 331844
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
This patch makes tryCandidate() virtual and some utility functions like
tryLess(), tryGreater(), ... externally available (used to be static).
This makes it possible for a target to derive a new MachineSchedStrategy from
GenericScheduler and reuse most parts.
It was necessary to wrap functions with the same names in
AMDGPU/SIMachineScheduler in a local namespace.
Review: Andy Trick, Florian Hahn
https://reviews.llvm.org/D43329
llvm-svn: 329884
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: bogner, rnk, MatzeB, RKSimon
Reviewed By: rnk
Subscribers: JDevlieghere, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D45133
llvm-svn: 329435
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
This is a NFC simple patch that changes the DEBUG dumping in the
MachineScheduler so that the dumping of the built SUnits is done before the
SchedImpl->initialize() is called.
This is better on SystemZ, since it has a strategy that does some dumping at
the start of the region, and it is not possible to easily read it if it is
output above a long list of SU.
Review: Javed Absar
https://reviews.llvm.org/D44089
llvm-svn: 326716
Fix a bug in ScheduleDAGMILive::scheduleMI which causes BotRPTracker not tracking CurrentBottom in some rare cases involving llvm.dbg.value.
This issues causes amdgcn target to assert when compiling some user codes with -g.
Differential Revision: https://reviews.llvm.org/D42394
llvm-svn: 323214
Two issues were found about machine inst scheduler when compiling ProRender
with -g for amdgcn target:
GCNScheduleDAGMILive::schedule tries to update LiveIntervals for DBG_VALUE, which it
should not since DBG_VALUE is not mapped in LiveIntervals.
when DBG_VALUE is the last instruction of MBB, ScheduleDAGInstrs::buildSchedGraph and
ScheduleDAGMILive::scheduleMI does not move RPTracker properly, which causes assertion.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D41132
llvm-svn: 320650
Headers/Implementation files should be named after the class they
declare/define.
Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in
favor of `class LiveIntarvals;`
llvm-svn: 320546
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
llvm-svn: 319168
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Duplicated code found in three places put into a new static function:
/// Given a Count of resource usage and a Latency value, return true if a
/// SchedBoundary becomes resource limited.
static bool checkResourceLimit(unsigned LFactor, unsigned Count,
unsigned Latency) {
return (int)(Count - (Latency * LFactor)) > (int)LFactor;
}
Review: Florian Hahn, Matthias Braun
https://reviews.llvm.org/D39235
llvm-svn: 316560
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
MachineScheduler when clustering loads or stores checks if base
pointers point to the same memory. This check is done through
comparison of base registers of two memory instructions. This
works fine when instructions have separate offset operand. If
they require a full calculated pointer such instructions can
never be clustered according to such logic.
Changed shouldClusterMemOps to accept base registers as well and
let it decide what to do about it.
Differential Revision: https://reviews.llvm.org/D37698
llvm-svn: 313208
The idea of this patch is to continue the scheduler state over an MBB boundary
in the case where the successor block has only one predecessor. This means
that the scheduler will continue in the successor block (after emitting any
branch instructions) with e.g. maintained processor resource counters.
Benchmarks have been confirmed to benefit from this.
The algorithm in MachineScheduler.cpp that extracts scheduling regions of an
MBB has been extended so that the strategy may optionally reverse the order
of processing the regions themselves. This is controlled by a new method
doMBBSchedRegionsTopDown(), which defaults to false.
Handling the top-most region of an MBB first also means that a top-down
scheduler can continue the scheduler state across any scheduling boundary
between to regions inside MBB.
Review: Ulrich Weigand, Matthias Braun, Andy Trick.
https://reviews.llvm.org/D35053
llvm-svn: 311072
Converts to range-loop usage in machine scheduler.
This makes the code neater and easier to read,
and also keeps pace of the machine scheduler
implementation with C++11 features.
Reviewed by: Matthias Braun
Differential Revision: https://reviews.llvm.org/D34320
llvm-svn: 305887
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Rewrite fixupKills() to use the LivePhysRegs class. Simplifies the code
and fixes a bug where the CSR registers in return blocks where missed
leading to invalid kill flags. Also remove the unnecessary rule that we
wouldn't set kill flags on tied operands.
No tests as I have an upcoming commit improving MachineVerifier checks
to catch these cases in multiple existing lit tests.
llvm-svn: 304055
Rename the DEBUG_TYPE to match the names of corresponding passes where
it makes sense. Also establish the pattern of simply referencing
DEBUG_TYPE instead of repeating the passname where possible.
llvm-svn: 303921
Summary:
This patch makes instruction fusion more aggressive by
* adding artificial edges between the successors of FirstSU and
SecondSU, similar to BaseMemOpClusterMutation::clusterNeighboringMemOps.
* updating PostGenericScheduler::tryCandidate to keep clusters together,
similar to GenericScheduler::tryCandidate.
This change increases the number of AES instruction pairs generated on
Cortex-A57 and Cortex-A72. This doesn't change code at all in
most benchmarks or general code, but we've seen improvement on kernels
using AESE/AESMC and AESD/AESIMC.
Reviewers: evandro, kristof.beyls, t.p.northover, silviu.baranga, atrick, rengolin, MatzeB
Reviewed By: evandro
Subscribers: aemerson, rengolin, MatzeB, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33230
llvm-svn: 303618
The current heuristic is triggered on `InFlightCount > BufferLimit`
which isn't really helpful on in-order cores where BufferLimit is zero.
Note that we already get latency hiding effects for in order cores
by instructions staying in the pending queue on stalls; The additional
latency scheduling heuristics only have minimal effects after that while
occasionally increasing register pressure too much resulting in extra
spills.
My motivation here is additional spills/reloads ending up in a loop in
464.h264ref / BlockMotionSearch function resulting in a 4% overal
regression on an in order core. rdar://30264380
llvm-svn: 300083
This patch enables schedulers to specify instructions that
cannot be issued with any other instructions.
It also fixes BeginGroup/EndGroup.
Reviewed by: Andrew Trick
Differential Revision: https://reviews.llvm.org/D30744
llvm-svn: 298885