Err on the side of brevity and rename (while providing aliases for the original
name) -Wbool-conversions, -Wint-conversions, and -Wvector-conversions for
consistency with constant, literal, string, and sign conversion warnings. And
name the diagnostic groups explicitly while I'm here rather than rewriting the
string in the groups and sema td files.
Curiously, vector-conversion is not under -Wconversion. Perhaps it should be.
llvm-svn: 152776
The bug that was caught by Apple's internal buildbots was valid and also showed another bug in my implementation.
These are now fixed, with regression tests added to catch them both (not Darwin-specific).
Original log:
====================
Revert r151638 because it causes assertion hit on PCH creation for Cocoa.h
Original log:
---------------------
Correctly track tags and enum members defined in the prototype of a function, and ensure they are properly scoped.
This fixes code such as:
enum e {x, y};
int f(enum {y, x} n) {
return 0;
}
This finally fixes PR5464 and PR5477.
---------------------
I also reverted r151641 which was enhancement on top of r151638.
====================
llvm-svn: 151712
Original log:
---------------------
Correctly track tags and enum members defined in the prototype of a function, and ensure they are properly scoped.
This fixes code such as:
enum e {x, y};
int f(enum {y, x} n) {
return 0;
}
This finally fixes PR5464 and PR5477.
---------------------
I also reverted r151641 which was enhancement on top of r151638.
llvm-svn: 151667
not integer constant expressions. In passing, fix the 'folding is an extension'
diagnostic to not claim we're accepting the code, since that's not true in
-pedantic-errors mode, and add this diagnostic to -Wgnu.
llvm-svn: 148209
scope, when no other indication is provided that the user intended to declare a
function rather than a variable.
Remove some false positives from the existing 'parentheses disambiguated as a
function' warning by suppressing it when the declaration is marked as 'typedef'
or 'extern'.
Add a new warning group -Wvexing-parse containing both of these warnings.
The new warning is enabled by default; despite a number of false positives (and
one bug) in clang's test-suite, I have only found genuine bugs with it when
running it over a significant quantity of real C++ code.
llvm-svn: 147599
diagnostic message are compared. If either is a substring of the other, then
no error is given. This gives rise to an unexpected case:
// expect-error{{candidate function has different number of parameters}}
will match the following error messages from Clang:
candidate function has different number of parameters (expected 1 but has 2)
candidate function has different number of parameters
It will also match these other error messages:
candidate function
function has different number of parameters
number of parameters
This patch will change so that the verification string must be a substring of
the diagnostic message before accepting. Also, all the failing tests from this
change have been corrected. Some stats from this cleanup:
87 - removed extra spaces around verification strings
70 - wording updates to diagnostics
40 - extra leading or trailing characters (typos, unmatched parens or quotes)
35 - diagnostic level was included (error:, warning:, or note:)
18 - flag name put in the warning (-Wprotocol)
llvm-svn: 146619
-Allow it to be used with multiple BeginSourceFile/EndSourceFile calls; for this introduce
a "finish" callback method in the DiagnosticConsumer. SDiagsWriter finishes up the serialization
file inside this method.
-Make it independent of any particular DiagnosticsEngine; make it use the SourceManager of the
Diagnostic object.
-Ignore null source ranges.
llvm-svn: 146020
of the first type is the same as the aka string of the second type, but both
types are different. Update the logic to print an aka for the first type to
show that they are different.
llvm-svn: 144558
FixIts might be exposed as C string via clang_getCString(), though the zero terminator is not allocated in CXLoadedDiagnosticSetImpl::makeString.
llvm-svn: 144379
FIXME: For now, " = 0Parse Issueexpected ';' after expression{{XXX}}" would not be matched due to unexpected garbage{{XXX} on some hosts.
llvm-svn: 144374
a single issue. Along the way, tweak c-index-test -read-diagnostics output so it is easier to tell what diagnostics are
child diagnostics.
llvm-svn: 144349
__int128_t and __uint128_t. Short and unsigned short integer literals support
is only to work around a crasher as reported in PR11179 and will be removed
once Clang no longer builds short integer literals.
llvm-svn: 143977
formatting as any other diagnostic, they will be properly line wrapped and
otherwise pretty printed. Let's take advantage of that and the new factoring to
add some helpful information to them (much like template backtrace notes and
other notes): the name of the macro whose expansion is being noted. This makes
a world of difference if caret diagnostics are disabled, making the expansion
notes actually useful in this case. It also helps ensure that in edge cases the
information the user needs is present. Consider:
% nl -ba t5.cc
1 #define M(x, y, z) \
2 y
3
4 M(
5 1,
6 2,
7 3);
We now produce:
% ./bin/clang -fsyntax-only t5.cc
t5.cc:6:3: error: expected unqualified-id
2,
^
t5.cc:2:3: note: expanded from macro: M
y
^
1 error generated.
Without the added information in the note, the name of the macro being expanded
would never be shown.
This also deletes a FIXME to use the diagnostic formatting. It's not yet clear
to me that we *can* do this reasonably, and the production of this message was
my primary goal here anyways.
I'd love any comments or suggestions on improving these notes, their wording,
etc. Currently, I need to make them provide more helpful information in the
presence of a token-pasting buffer, and I'm pondering adding something along
the lines of "expanded from argument N of macro: ...".
llvm-svn: 142127
standing deficiency: we were providing no macro backtrace information
whenever caret diagnostics were turned off. This sinks the logic for
suppressing the code snippet and caret to the code that actually prints
tho code snippet and caret. Along the way, clean up the naming of
functions, remove some now fixed FIXMEs, and generally improve the
wording and logic of this process.
Add a test case exerecising this functionality. It is notable that the
resulting messages are extremely low quality. I'm working on a follow-up
patch that should address this and have left a FIXME in the test case.
llvm-svn: 142120
the important code in this test to make the test more stable. Now adding
further tests won't shift the line numbers occuring in the diagnostic
output.
llvm-svn: 142118
message. Specifically, we now only line-wrap the first line of te
diagnostic message and assume the remainder is manually formatted. While
adding it back, simplify the logic for doing this.
Finally, add a test that ensures we actually preserve this feature. =D
*Now* its not dead code. Thanks to Doug for the test case.
llvm-svn: 140538
would have caught a bug I introduced during refactoring. Silly me
thinking this was all well tested already...
If any of this is already covered by other tests, let me know. I looked
around and didn't see any.
llvm-svn: 140522
loads the named module. The syntax itself is intentionally hideous and
will be replaced at some later point with something more
palatable. For now, we're focusing on the semantics:
- Module imports are handled first by the preprocessor (to get macro
definitions) and then the same tokens are also handled by the parser
(to get declarations). If both happen (as in normal compilation),
the second one is redundant, because we currently have no way to
hide macros or declarations when loading a module. Chris gets credit
for this mad-but-workable scheme.
- The Preprocessor now holds on to a reference to a module loader,
which is responsible for loading named modules. CompilerInstance is
the only important module loader: it now knows how to create and
wire up an AST reader on demand to actually perform the module load.
- We search for modules in the include path, using the module name
with the suffix ".pcm" (precompiled module) for the file name. This
is a temporary hack; we hope to improve the situation in the
future.
llvm-svn: 138679
and 'expansions' rather than 'instantiated' and 'contexts'.
This is the first of several patches migrating Clang's terminology
surrounding macros from 'instantiation' to 'expansion'.
llvm-svn: 135135
When two different types has the same text representation in the same
diagnostic message, print an a.k.a. after the type if the a.k.a. gives extra
information about the type.
class versa_string;
typedef versa_string string;
namespace std {template <typename T> class vector;}
using std::vector;
void f(vector<string> v);
namespace std {
class basic_string;
typedef basic_string string;
template <typename T> class vector {};
void g() {
vector<string> v;
f(v);
}
}
Old message:
----------------
test.cc:15:3: error: no matching function for call to 'f'
f(&v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' to 'vector<string>' for 1st argument
void f(vector<string> v);
^
1 error generated.
New message:
---------------
test.cc:15:3: error: no matching function for call to 'f'
f(v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' (aka 'std::vector<std::basic_string>') to
'vector<string>' (aka 'std::vector<versa_string>') for 1st argument
void f(vector<string> v);
^
1 error generated.
llvm-svn: 134904
argument expansion to use the macro argument source locations as well.
Add a few tests to exercise this. There is still a bit more work needed
here though.
llvm-svn: 134674
instantiation and improve diagnostics which are stem from macro
arguments to trace the argument itself back through the layers of macro
expansion.
This requires some tricky handling of the source locations, as the
argument appears to be expanded in the opposite direction from the
surrounding macro. This patch provides helper routines that encapsulate
the logic and explain the reasoning behind how we step through macros
during diagnostic printing.
This fixes the rest of the test cases originially in PR9279, and later
split out into PR10214 and PR10215.
There is still some more work we can do here to improve the macro
backtrace, but those will follow as separate patches.
llvm-svn: 134660
This is a one line fix here:
+ // Don't print recursive instantiation notes from an instantiation note.
+ Loc = SM.getSpellingLoc(Loc);
While here, fix the testcase to be more precise (it got filecheck'ized
brutally), and fix EmitCaretDiagnostic to be private and to not pass down
the unused 'Level' argument.
llvm-svn: 133993
prints the file, line, and column of a diagnostic. We currently
support Clang's normal format, MSVC, and Vi formats.
Note that we no longer change the diagnostic format based on
-fms-extensions.
Patch by Andrew Fish!
llvm-svn: 131794
required modifying a few tests that specifically use note include stacks
to check the source manager's view of include stacks. I've simply added
the flag to these tests for now, they may have to be more substantially
changed if we decide to remove support for note include stacks
altogether.
Also, add a test for include stacks on notes that was supposed to go in
with the previous commit.
llvm-svn: 128390
When -working-directory is passed in command line, file paths are resolved relative to the specified directory.
This helps both when using libclang (where we can't require the user to actually change the working directory)
and to help reproduce test cases when the reproduction work comes along.
--FileSystemOptions is introduced which controls how file system operations are performed (currently it just contains
the working directory value if set).
--FileSystemOptions are passed around to various interfaces that perform file operations.
--Opening & reading the content of files should be done only through FileManager. This is useful in general since
file operations will be abstracted in the future for the reproduction mechanism.
FileSystemOptions is independent of FileManager so that we can have multiple translation units sharing the same
FileManager but with different FileSystemOptions.
Addresses rdar://8583824.
llvm-svn: 118203
printed in a diagnostic, similar to the limit we already have on the
depth of the template instantiation backtrace. The macro instantiation
backtrace is limited to 10 "instantiated from:" diagnostics; when it's
longer than that, we'll show the first half, then say how many were
suppressed, then show the second half. The limit can be changed with
-fmacro-instantiation-limit=N, and turned off with N=0.
This eliminates a lot of note spew with libraries making use of the
Boost.Preprocess library.
llvm-svn: 103014
source line wider than the terminal where the associated fix-it line
is longer than the caret line. Previously, we would crash in this
case, which was rather unfortunate. Fixes <rdar://problem/7856226>.
llvm-svn: 101426
that adds parentheses from the main diagnostic down to a new
note. This way, when the fix-it represents a choice between two
options, each of the options is associted with a note. There is no
default option in such cases. For example:
/Users/dgregor/t.c:2:9: warning: & has lower precedence than ==; ==
will be
evaluated first [-Wparentheses]
if (x & y == 0) {
^~~~~~~~
/Users/dgregor/t.c:2:9: note: place parentheses around the &
expression to
evaluate it first
if (x & y == 0) {
^
( )
/Users/dgregor/t.c:2:9: note: place parentheses around the ==
expression to
silence this warning
if (x & y == 0) {
^
( )
llvm-svn: 101249
we'd add an offset from the spelling location space to the
instantiation location, which doesn't make sense and would
lead up to the text diagnostics crashing when presented with
non-sensical locations.
This fixes rdar://7597492, a crash on 255.vortex.
llvm-svn: 96004
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
file. This is accomplished by introducing the notion of a "virtual"
file into the file manager, which provides a FileEntry* for a named
file whose size and modification time are known but which may not
exist on disk.
Added a cute little test that remaps both a .c file and a .h file it
includes to alternative files.
llvm-svn: 90329
-remap-file=from;to
which takes the file "from" and transparently replaces its contents
with the contents of the file "to" from the source manager's
perspective. This is the moral equivalent of
cp from saved
cp to from
<call clang>
cp saved from
rm saved
without all of the pesky file copying.
llvm-svn: 90307
column computation isn't correct and could exceed the line length, which
resulted in a buffer overflow later.
- Chris, is there a better way for this code to compute the final column used
by the caret?
llvm-svn: 84475
delta tree.
The issue is roughly a conflict in ReplaceText between two kinds of
uses. One, it should be possible to replace a replacement: for example, the
ObjC rewriter calls ReplaceStmt for an expression, then replaces the resulting
expression with another expression. Two, it should be possible to
replace text that already has text inserted before it: for example, the
HTML rewriter inserts a bunch of tags at the beginning of the line, then
tries to escape the first character on the line. This patch
distinguishes the two cases by storing the deltas separately;
essentially, replacements and insertions no longer interfere with
each other.
Another possibility would be to add some sort of flag to ReplaceText, but
this seems a bit more intuitive and flexible.
There are a few downsides to the current solution: one is that there isn't
any way to remove/replace an insertion without touching additional
surrounding text; if such an operation turns out to be useful, an
additional method or flag can be added. Another is that an insertion
and replacing a string of length zero are distinct operations; I'm not
sure how to resolve this, or whether it will be confusing in practice.
This is relatively sensitive code, so please test and tell me if
anything breaks.
llvm-svn: 72000
The "instantiated from" messages coming from the caret diagnostics system are
basically walking the macro expansion tree, emitting each level as it goes. However, it was
skipping certain leaves in the tree by skipping up the entire instantiation arm every time
it went up one spelling arm. This caused it to miss some things. For example, in this
testcase:
#define M1(x) x
#define M2 1;
void foo() {
M1(M2)
}
we now print:
/Users/sabre/Desktop/clang-unused-value-macro.c:6:2: warning: expression result unused
M1(M2)
^~~~~~
/Users/sabre/Desktop/clang-unused-value-macro.c:6:5: note: instantiated from:
M1(M2)
^~
/Users/sabre/Desktop/clang-unused-value-macro.c:3:12: note: instantiated from:
#define M2 1;
^
Previously we didn't print the last line, so we never emitted the caret pointing to the 1!
Incidentally, the spaces between the lines is really noisy, I think we should reconsider
this heuristic (which adds them when the printed code starts too close to the start of the
line).
The regression test can't use -verify, because -verify doesn't catch notes for macro
instantiation history.
llvm-svn: 71025
- The diagnostic is still poor, however. Doug, can you investigate?
- Improved the test case to not depend on the file name, now it can
be extended to actually check the formatting of the diagnostics
(I'm hoping grep -A is portable here).
llvm-svn: 70807
might be wider than we're supposed to print. In this case, we try to
select the "important" subregion of the source line, which contains
everything that we want to show (e.g., with underlining and the caret
itself) and tries to also contain some of the context.
From the fantastically long line in the test case, we get an error
message that slices down to this:
message-length.c:18:120: warning: comparison of distinct pointer types
('int *' and 'float *')
a_func_to_call(ip == FloatPointer, ip[ALongIndexName],
~~ ^ ~~~~~~~~~~~~
There are a bunch of gee-it-sounds-good heuristics in here, which seem
to do well on the various simple tests I've thrown at it. However,
we're going to need to look at a bunch more diagnostics to tweak these
heuristics.
This is the second part of <rdar://problem/6711348>. Almost there!
llvm-svn: 70597
Also, put a line of whitespace between the diagnostic and the source
code/caret line when the start of the actual source code text lines up
(or nearly lines up) with the most recent line of the diagnostic. For
example, here it's okay for the last line of the diagnostic to be
(vertically) next to the source line, because there is horizontal
whitespace to separate them:
decl-expr-ambiguity.cpp:12:16: error: function-style cast to a builtin
type can only take one argument
typeof(int)(a,5)<<a;
However, here is a case where we need the vertical separation (since
there is no horizontal separation):
message-length.c:10:46: warning: incompatible pointer types initializing 'void
(int, float, char, float)', expected 'int (*)(int, float, short,
float)'
int (*fp1)(int, float, short, float) = f;
This is part one of <rdar://problem/6711348>.
llvm-svn: 70578
by marking the predefines buffer as a system header. The problem
with stdint is that it was getting problems like this:
/Volumes/Projects/cvs/llvm/Debug/lib/clang/1.0/include/stdint.h:43:9: warning: 'long long' is an extension when C99 mode is not enabled
typedef __INT64_TYPE__ int64_t;
^
<built-in>:73:29: note: instantiated from:
#define __INT64_TYPE__ long long
^
We correctly silence warnings in system headers, but only if the
spelling location of the token came from the system header. This is
designed so that if you use a system macro in your code that you don't
get punished for its definition. This is all cool except that the
predefines buffer wasn't considered a system header.
llvm-svn: 69770
with other diagnostic mapping. In the new scheme, -Wfoo or -Wno-foo or
-Werror=foo all override the -pedantic options, and __extension__
robustly silences all extension diagnostics in their scope.
An added bonus of this change is that MAP_DEFAULT goes away, meaning that
per-diagnostic mapping information can now be stored in 2 bits, doubling
the density of the Diagnostic::DiagMapping array. This also
substantially simplifies Diagnostic::getDiagnosticLevel.
OTOH, this temporarily introduces some "macro intensive" code in
Diagnostic.cpp. This will be addressed in a later patch.
llvm-svn: 69154
wine sources. This was happening because HighlightMacros was
calling EnterMainFile multiple times on the same preprocessor
object and getting an assert due to the new #line stuff (the
file in question was bison output with #line directives).
The fix for this is to not reenter the file. Instead,
relex the tokens in raw mode, swizzle them a bit and repreprocess
the token stream. An added bonus of this is that rewrite macros
will now hilight the macro definition as well as its uses. Woo.
llvm-svn: 64480
using "-parse-ast -verify".
Updated all test cases (using a sed script) that invoked -parse-ast-check to
now use -parse-ast -verify.
Fixed a bug where using "-verify" instead of "-parse-ast-check" would not
correctly create the DiagClient needed to accumulate diagnostics.
llvm-svn: 42365
preprocessor state, causing bogus diagnostics when the file is parsed for real. This
implements Misc/diag-checker.c. Thanks to Ted for noticing this.
llvm-svn: 41000