Note: gcc appears to allow this fold with -freciprocal-math alone,
but clang/llvm require more than that with this patch. The wording
in the definitions seems fuzzy enough that it could go either way,
but we'll err on the conservative side of FMF interpretation.
This patch also changes the newly created fmul to have FMF propagated
by the last fdiv rather than intersecting the FMF of the fdivs. This
matches the behavior of other folds near here. The new fmul is only
used to produce an intermediate op for the final fdiv result, so it
shouldn't be any stricter than that result. The previous behavior
could result in dropping FMF via other folds in instcombine or CSE.
Differential Revision: https://reviews.llvm.org/D43398
llvm-svn: 326098
In r322867, we introduced IsStandalone when printing MIR in -debug
output. The default behaviour for that was:
1) If any of MBB, MI, or MO are -debug-printed separately, don't omit any
redundant information.
2) When -debug-printing a MF entirely, don't print any redundant
information.
3) When printing MIR, don't print any redundant information.
I'd like to change 2) to:
2) When -debug-printing a MF entirely, don't omit any redundant information.
Differential Revision: https://reviews.llvm.org/D43337
llvm-svn: 326094
This patch removes the HashString function from StringExtraces and
replaces its uses with calls to djbHash from DJB.h.
This change is *almost* NFC. While the algorithm is identical, the
djbHash implementation in StringExtras used 0 as its default seed while
the implementation in DJB uses 5381. The latter has been shown to result
in less collisions and improved avalanching and is used by the DWARF
accelerator tables.
Because some test were implicitly relying on the hash order, I've
reverted to using zero as a seed for the following two files:
lld/include/lld/Core/SymbolTable.h
llvm/lib/Support/StringMap.cpp
Differential revision: https://reviews.llvm.org/D43615
llvm-svn: 326091
Summary:
With OS type AMDPAL, the scratch descriptor is hardwired to be loaded
from offset 0 of the global information table, whose low pointer is
passed in s0. For a merge shader on gfx9+, it needs to be s8 instead, as
the hardware reserves s0-s7.
Reviewers: kzhuravl
Subscribers: arsenm, nhaehnle, dstuttard, llvm-commits, t-tye, yaxunl, wdng, kzhuravl
Differential Revision: https://reviews.llvm.org/D42203
llvm-svn: 326088
Summary:
In the test case, the machine scheduler moves a dead write to a subreg
up into the middle of a segment of the overall reg's live range, where
the segment had liveness only for other subregs in the reg.
handleMoveUp created an invalid live range, causing an assert a bit
later.
This commit fixes it to handle that situation. The segment is split in
two at the insertion point, and the part after the split, and any
subsequent segments up to the old position, are changed to be defined by
the moved def.
V2: Better test.
Subscribers: MatzeB, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D43478
Change-Id: Ibc42445ddca84e79ad1f616401015d22bc63832e
llvm-svn: 326087
It looks like some of our tests depend on the ordering of hashed values.
I'm reverting my changes while I try to reproduce and fix this locally.
Failing builds:
lab.llvm.org:8011/builders/lld-x86_64-darwin13/builds/18388
lab.llvm.org:8011/builders/clang-cmake-x86_64-sde-avx512-linux/builds/6743
lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast/builds/15607
llvm-svn: 326082
This removes the HashString function from StringExtraces and replaces
its uses with calls to djbHash from DJB.h
This is *almost* NFC. While the algorithm is identical, the djbHash
implementation in StringExtras used 0 as its seed while the
implementation in DJB uses 5381. The latter has been shown to result in
less collisions and improved avalanching.
https://reviews.llvm.org/D43615
(cherry picked from commit 77f7f965bc9499a9ae768a296ca5a1f7347d1d2c)
llvm-svn: 326081
This will still be constexpr when the standard library supports it, but
doesn't force constexpr. Old libraries will get a global constructor,
which is not too bad.
llvm-svn: 326080
All SIMD architectures can emulate masked load/store/gather/scatter
through element-wise condition check, scalar load/store, and
insert/extract. Therefore, bailing out of vectorization as legality
failure, when they return false, is incorrect. We should proceed to cost
model and determine profitability.
This patch is to address the vectorizer's architectural limitation
described above. As such, I tried to keep the cost model and
vectorize/don't-vectorize behavior nearly unchanged. Cost model tuning
should be done separately.
Please see
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120164.html for
RFC and the discussions.
Closes D43208.
Patch by: Hideki Saito <hideki.saito@intel.com>
llvm-svn: 326079
The dependency matrix is only empty if no conflicting load/store
instructions have been found. In that case, it is safe to interchange.
For the LLVM test-suite, after this change around 1900 loops are
interchanged, whereas it is 15 before this change. On cortex-a57,
this gives an improvement of -0.57% on the geomean execution
time of SPEC2006, SPEC2000 and the test-suite. There are a
few small perf regressions, but I think we can improve on those
by making the cost model better.
Reviewers: karthikthecool, mcrosier
Reviewed by: karthikthecool
Differential Revision: https://reviews.llvm.org/D43236
llvm-svn: 326077
The patch introduces the new function in ScalarEvolution to get
all loops used in specified SCEV.
This is a preparation for re-writing isKnownPredicate utility as
described in https://reviews.llvm.org/D42417.
Reviewers: sanjoy, mkazantsev, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43504
llvm-svn: 326072
The patch introduces the SCEVPostIncRewriter rewriter which
is similar to SCEVInitRewriter but rewrites AddRec with post increment
value of this AddRec.
This is a preparation for re-writing isKnownPredicate utility as
described in https://reviews.llvm.org/D42417.
Reviewers: sanjoy, mkazantsev, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43499
llvm-svn: 326071
Enable multiple COPY hints to eliminate more COPYs during register allocation.
Note that this is something all targets should do, see
https://reviews.llvm.org/D38128.
Review: Robert Lytton
llvm-svn: 326069
The patch introduces an additional parameter IgnoreOtherLoops to SCEVInitRewriter.
if it is equal to true then rewriter will not invalidate result in case
SCEV depends on other loops then specified during creation.
The patch does not change the default behavior.
This is a preparation for re-writing isKnownPredicate utility as
described in https://reviews.llvm.org/D42417.
Reviewers: sanjoy, mkazantsev, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43498
llvm-svn: 326067
This code seemed to try to widen to 128, 256, or 512 bit vectors, but we only create X86ISD::AVG with a power of 2 number of elements. This means the only nodes that need to be legalized are less than 128-bits and need to be widened up to 128 bits.
llvm-svn: 326064
Which types are considered 'simple' is a function of the requirements of all targets that LLVM supports. That shouldn't directly affect what types we are able to handle. The remainder of this code checks that the number of elements is a power of 2 and takes care of splitting down to a legal size.
llvm-svn: 326063
It is redundant with the implementation in TypedInit.
Change-Id: I8ab1fb5c77e4923f7eb3ffae5889f0f8af6093b4
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43678
llvm-svn: 326061
Summary:
FieldInit will just rely on the standardized resolving mechanism to give
us DefInits for folding, thus simplifying the code.
Unlike the removal of resolveListElementReference, this shouldn't have
performance implications, because DefInits do not recurse inside their
record.
Change-Id: Id4544c774c9d9ee92f293615af6ecff706453f21
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43563
llvm-svn: 326060
Summary:
Resolving a VarListElementInit should just resolve the list and then
take its element. This eliminates a lot of duplicated logic and
simplifies the next steps of refactoring resolveReferences.
This does potentially cause sub-elements of the entire list to be
resolved resulting in more work, but I didn't notice a measurable
change in performance, and a later patch adds a caching mechanism that
covers at least the common case of `var[i]` in a more generic way.
Change-Id: I7b59185b855c7368585c329c31e5be38c5749dac
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43562
llvm-svn: 326059
Our UMIN/UMAX, vector truncation and shuffle combining is good enough to efficiently handle v8i64 with the number of leading zeros that are necessary for PSUBUS.
llvm-svn: 326034
Now that UMIN etc are Legal/Custom for SSE2+, we can efficiently match SUBUS v8i32 cases from SSSE3 which can perform efficient truncation with PSHUFB.
llvm-svn: 326033
Enable multiple COPY hints to eliminate more COPYs during register allocation.
Note that this is something all targets should do, see
https://reviews.llvm.org/D38128.
Review: James Y Knight
llvm-svn: 326028
V_SUBBREV_U32 is a commute opcode for V_SUBB_U32. However, when
we try to commute V_SUBB_U32 in order to shrink it we do not then
process V_SUBBREV_U32 and it stay VOP3. This is fixed.
Differential Revision: https://reviews.llvm.org/D43699
llvm-svn: 326011
Summary:
This patch implements the name lookup functionality of the .debug_names
accelerator table and hooks it up to "llvm-dwarfdump -find". To make the
interface of the two kinds of accelerator tables more consistent, I've
created an abstract "DWARFAcceleratorTable::Entry" class, which provides
a consistent interface to access the common functionality of the table
entries (such as getting the die offset, die tag, etc.). I've also
modified the apple table to vend entries conforming to this interface.
Reviewers: JDevlieghere, aprantl, probinson, dblaikie
Subscribers: vleschuk, clayborg, echristo, llvm-commits
Differential Revision: https://reviews.llvm.org/D43067
llvm-svn: 326003
This portion can be matched by other patterns. We don't need it to make the larger pattern valid. It's sufficient to have a v1i1 mask input without caring where it came from.
llvm-svn: 325999
This pass performs peephole optimizations to cleanup ugly code sequences at
MachineInstruction layer.
Currently, the only optimization in this pass is to eliminate type
promotion
sequences for zero extending 32-bit subregisters to 64-bit registers.
If the compiler could prove the zero extended source come from 32-bit
subregistere then it is safe to erase those promotion sequece, because the
upper half of the underlying 64-bit registers were zeroed implicitly
already.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325991
When -mattr=+alu32 passed to the disassembler, use decoder namespace for
32-bit subregister.
This is to disassemble load and store instructions in preferred B format
as described in previous commit:
w = *(u8 *) (r + off) // BPF_LDX | BPF_B
w = *(u16 *)(r + off) // BPF_LDX | BPF_H
w = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = w // BPF_STX | BPF_B
*(u16 *)(r + off) = w // BPF_STX | BPF_H
*(u32 *)(r + off) = w // BPF_STX | BPF_W
NOTE: all other instructions should still use the default decoder
namespace.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325990
After all those preparation patches, now we could enable 32-bit subregister
support once -mattr=+alu32 specified.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325989
This patch support 32-bit subregister in three InstrInfo hooks, i.e.
copyPhysReg, loadRegFromStackSlot and storeRegToStackSlot,
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325988
The instruction mapping between eBPF/arm64/x86_64 are:
eBPF arm64 x86_64
LD1 BPF_LDX | BPF_B ldrb movzbl
LD2 BPF_LDX | BPF_H ldrh movzwl
LD4 BPF_LDX | BPF_W ldr movl
movzbl/movzwl/movl on x86_64 accept 32-bit sub-register, for example %eax,
the same for ldrb/ldrh on arm64 which accept 32-bit "w" register. And
actually these instructions only accept sub-registers. There is no point
to have LD1/2/4 (unsigned) for 64-bit register, because on these arches,
upper 32-bits are guaranteed to be zeroed by hardware or VM, so load into
the smallest available register class is the best choice for maintaining
type information.
For eBPF we should adopt the same philosophy, to change current
format (A):
r = *(u8 *) (r + off) // BPF_LDX | BPF_B
r = *(u16 *)(r + off) // BPF_LDX | BPF_H
r = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = r // BPF_STX | BPF_B
*(u16 *)(r + off) = r // BPF_STX | BPF_H
*(u32 *)(r + off) = r // BPF_STX | BPF_W
into B:
w = *(u8 *) (r + off) // BPF_LDX | BPF_B
w = *(u16 *)(r + off) // BPF_LDX | BPF_H
w = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = w // BPF_STX | BPF_B
*(u16 *)(r + off) = w // BPF_STX | BPF_H
*(u32 *)(r + off) = w // BPF_STX | BPF_W
There is no change on encoding nor how should they be interpreted,
everything is as it is, load the specified length, write into low bits of
the register then zeroing all remaining high bits.
The only change is their associated register class and how compiler view
them.
Format A still need to be kept, because eBPF LLVM backend doesn't support
sub-registers at default, but once 32-bit subregister is enabled, it should
use format B.
This patch implemented this together with all those necessary extended load
and truncated store patterns.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325987
getScalarShiftAmount method should be implemented for eBPF backend to make
sure shift amount could still get correct type once 32-bit subregisters
support are enabled.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325986
We need to support condition comparison on i32. All these comparisons are
supposed to be combined into BPF_J* instructions which only support i64.
For ISD::BR_CC we need to promote it to i64 first, then do custom lowering.
For ISD::SET_CC, just expand to SELECT_CC like what's been done for i64.
For ISD::SELECT_CC, we also want to do custom lower for i32. However, after
32-bit subregister support enabled, it is possible the comparison operands
are i32 while the selected value are i64, or the comparison operands are
i64 while the selected value are i32. We need to define extra instruction
pattern and support them in custom instruction inserter.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325985
There is no eBPF ISA support for BSWAP, ROTR, ROTL, SREM, SDIVREM, MULHU,
ADDC, ADDE etc on i32.
They could be emulated by other basic BPF_ALU operations, we'd set their
lowering action the same as i64.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325984
This patch add new calling conventions to allow GPR32RegClass as valid
register class for arguments and return types.
New calling convention will only be choosen when -mattr=+alu32 specified.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325983
This new attribute aims to control the enablement of 32-bit subregister
support on eBPF backend.
Name the interface as "alu32" is because we in particular want to enable
the generation of BPF_ALU32 instructions by enable subregister support.
This attribute could be used in the following format with llc:
llc -mtriple=bpf -mattr=[+|-]alu32
It is disabled at default.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325982
For transformations between i32 and i64, if it is explicit signed extension:
- first cast the operand to i64
- then use SLL + SRA to finish the extension.
if it is explicit zero extension:
- first cast the operand to i64
- then use SLL + SRL to finish the extension.
if it is explicit any extension:
- just refer to 64-bit register.
if it is explicit truncation:
- just refer to 32-bit subregister.
NOTE: Some of the zero extension sequences might be unnecessary, they will be
removed by an peephole pass on MachineInstruction layer.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325981
These 32-bit ALU insn patterns which takes immediate as one operand were
initially added to enable AsmParser support, and the AsmMatcher uses "ins"
and "outs" fields to deduct the operand constraint.
However, the instruction selector doesn't work the same as AsmMatcher. The
selector will use the "pattern" field for which we are not setting the
predication for immediate operands correctly.
Without this patch, i32 would eventually means all i32 operands are valid,
both imm and gpr, while these patterns should allow imm only.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325980
markSuperRegs is the canonical helper function used to mark reserved
registers. It could mark any overlapping sub-registers automatically.
Reviewed-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 325979
The instruction sequence used to get the address of the PC into a GPR requires
that we clobber the link register. Doing so without having first saved it in
the prologue leaves the function unable to return. Currently, this sequence is
emitted into the entry block. To ensure the prologue is inserted before this
sequence, disable shrink-wrapping.
This fixes PR33547.
Differential Revision: https://reviews.llvm.org/D43677
llvm-svn: 325972
In DWARF v5 the Line Number Program Header is extensible, allowing values with
new content types. In this extension a content type is added,
DW_LNCT_LLVM_source, which contains the embedded source code of the file.
Add new optional attribute for !DIFile IR metadata called source which contains
source text. Use this to output the source to the DWARF line table of code
objects. Analogously extend METADATA_FILE in Bitcode and .file directive in ASM
to support optional source.
Teach llvm-dwarfdump and llvm-objdump about the new values. Update the output
format of llvm-dwarfdump to make room for the new attribute on file_names
entries, and support embedded sources for the -source option in llvm-objdump.
Differential Revision: https://reviews.llvm.org/D42765
llvm-svn: 325970
This has the advantage of making release only builds more warning
free and there's no need to make this routine a class function if
it isn't using class members anyhow.
llvm-svn: 325967
This is the first in a series of patches that will define more
instructions using InstRW so that we can move away from ItinRW
and ultimately have a complete Power 9 scheduler.
Differential Revision: https://reviews.llvm.org/D43635
llvm-svn: 325956
These can be created by type legalization promoting the inputs to select to match scalar boolean contents.
We were trying to pattern match them away during isel, but its better to just remove them from the DAG.
I've cleaned up some patterns to not check for this 'and' anymore. But I suspect this has also opened up opportunities for pattern removal.
llvm-svn: 325949
This feature enables the fusion of the comparison and the conditional select
instructions together.
Differential revision: https://reviews.llvm.org/D42392
llvm-svn: 325939
The test changes you can see are related to the changes in ReplaceNodeResults. Though shuffle-vs-trunc-512.ll does have a test that exercises the code in LowerBITCAST. Looks like the test output didn't change because DAG combining is able to clean up the resulting type legalization. Adding the custom hook just makes type legalization work less hard.
Differential Revision: https://reviews.llvm.org/D43447
llvm-svn: 325933
Summary:
Add a target option AllowRegisterRenaming that is used to opt in to
post-register-allocation renaming of registers. This is set to 0 by
default, which causes the hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
fields of all opcodes to be set to 1, causing
MachineOperand::isRenamable to always return false.
Set the AllowRegisterRenaming flag to 1 for all in-tree targets that
have lit tests that were effected by enabling COPY forwarding in
MachineCopyPropagation (AArch64, AMDGPU, ARM, Hexagon, Mips, PowerPC,
RISCV, Sparc, SystemZ and X86).
Add some more comments describing the semantics of the
MachineOperand::isRenamable function and how it is set and maintained.
Change isRenamable to check the operand's opcode
hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq bit directly instead of
relying on it being consistently reflected in the IsRenamable bit
setting.
Clear the IsRenamable bit when changing an operand's register value.
Remove target code that was clearing the IsRenamable bit when changing
registers/opcodes now that this is done conservatively by default.
Change setting of hasExtraSrcRegAllocReq in AMDGPU target to be done in
one place covering all opcodes that have constant pipe read limit
restrictions.
Reviewers: qcolombet, MatzeB
Subscribers: aemerson, arsenm, jyknight, mcrosier, sdardis, nhaehnle, javed.absar, tpr, arichardson, kristof.beyls, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, escha, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D43042
llvm-svn: 325931
Summary:
This patch is an enhancement to propagate dbg.value information when Phis are created on behalf of LCSSA.
I noticed a case where a value carried across a loop was reported as <optimized out>.
Specifically this case:
```
int bar(int x, int y) {
return x + y;
}
int foo(int size) {
int val = 0;
for (int i = 0; i < size; ++i) {
val = bar(val, i); // Both val and i are correct
}
return val; // <optimized out>
}
```
In the above case, after all of the interesting computation completes our value
is reported as "optimized out." This change will add a dbg.value to correct this.
This patch also moves the dbg.value insertion routine from LoopRotation.cpp
into Local.cpp, so that we can share it in both places (LoopRotation and LCSSA).
Reviewers: mzolotukhin, aprantl, vsk, davide
Reviewed By: aprantl, vsk
Subscribers: dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 325926
If we have a loop like this:
int n = 0;
while (...) {
if (++n >= MAX) {
n = 0;
}
}
then the body of the 'if' statement will only be executed once every MAX
iterations. Detect this by looking for branches in loops where taking the branch
makes the branch condition evaluate to 'not taken' in the next iteration of the
loop, and reduce the probability of such branches.
This slightly improves EEMBC benchmarks on cortex-m4/cortex-m33 due to making
better choices in if-conversion, but has no effect on any other cpu/benchmark
that I could detect.
Differential Revision: https://reviews.llvm.org/D35804
llvm-svn: 325925
The existing code was inefficiently looking for 'nsz' variants.
That's unnecessary because we canonicalize those to the expected
form with -0.0.
We may also want to adjust or remove the fold that sinks negation.
We don't do that for fdiv (or integer ops?). That should be uniform?
It may also lead to missed optimization as in PR21914:
https://bugs.llvm.org/show_bug.cgi?id=21914
...or we just have to fix other passes to avoid that problem.
llvm-svn: 325924
The following set of instructions was originally planned to be added for Power 9
and so code was added to support them. However, a decision was made later on to
withdraw support for these instructions in the hardware.
xscmpnedp
xvcmpnesp
xvcmpnedp
This patch removes support for the instructions that were not added.
Differential Revision: https://reviews.llvm.org/D43641
llvm-svn: 325918
Summary:
There are transformation that change setcc into other constructs, and transform that try to reconstruct a setcc from the brcond condition. Depending on what order these transform are done, the end result differs.
Most of the time, it is preferable to get a setcc as a brcond argument (and this is why brcond try to recreate the setcc in the first place) so we ensure this is done every time by also doing it at the setcc level when the only user is a brcond.
Reviewers: spatel, hfinkel, niravd, craig.topper
Subscribers: nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D41235
llvm-svn: 325892
This reverts r325884.
Clang's TableGen has dependencies on the exact ordering of superclasses.
Revert this change fully for now to fix the build.
Change-Id: Ib297f5571cc7809f00838702ad7ab53d47335b26
llvm-svn: 325891
Add GlobalISel infrastructure up to the point where we can select a ret
void.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D43583
llvm-svn: 325888
A subsequent change intends to remove resolveListElementReference
entirely. This part of the removal can be split out for better
bisectability.
Change-Id: Ibd762d88fd2d1e2cc116a259e2a27a5e9f9a8b10
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43561
Change-Id: Ifb695041cef1964ad8a3102f448249501a9243f0
llvm-svn: 325886
Summary:
Only check whether the left-hand side type is a subclass (or equal to)
the right-hand side type.
This requires a further fix in handling !if expressions and in type
resolution.
Furthermore, reverse the order of superclasses so that resolveTypes will
find a least common ancestor at least in simple cases.
Add a test that used to be accepted without flagging the obvious type
error.
Change-Id: Ib366db1a4e6a079f1a0851e469b402cddae76714
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43559
llvm-svn: 325884
Summary:
Returns the size of a list. I have found this to be rather useful in some
development for the AMDGPU backend where we could simplify our .td files
by concatenating list<LLVMType> for complex intrinsics. Doing so requires
us to compute the position argument for LLVMMatchType.
Basically, the usage is in a pattern that looks somewhat like this:
list<LLVMType> argtypes =
!listconcat(base,
[llvm_any_ty, LLVMMatchType<!size(base)>]);
Change-Id: I360a0b000fd488d18bea412228230fd93722bd2c
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits, tpr
Differential Revision: https://reviews.llvm.org/D43553
llvm-svn: 325883
Summary:
This handles def-after-use of physregs, and allows us to merge loads and
stores even across some physreg defs (typically M0 defs).
Change-Id: I076484b2bda27c2cf46013c845a0380c5b89b67b
Reviewers: arsenm, mareko, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D42647
llvm-svn: 325882
Summary:
This fixes cases like the new test @nonuniform. In that test, %cc itself
is a uniform value; however, when reading it after the end of the loop in
basic block %if, its value is effectively non-uniform.
This problem was encountered in
https://bugs.freedesktop.org/show_bug.cgi?id=103743; however, this change
in itself is not sufficient to fix that bug, as there is another issue
in the AMDGPU backend.
Change-Id: I32bbffece4a32f686fab54964dae1a5dd72949d4
Reviewers: arsenm, rampitec, jlebar
Subscribers: wdng, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D40546
llvm-svn: 325881
Summary:
MemDep caches results that signify that a dependence is non-local, and
there is currently no way to invalidate such cache entries.
Unfortunately, when MLSM sinks a store that can result in a non-local
dependence becoming a local one, and then MemDep gives wrong answers.
The easiest way out here is to just say that MLSM does indeed not
preserve MemDep results.
Reviewers: davide, Gerolf
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43177
llvm-svn: 325880
Enable multiple COPY hints to eliminate more COPYs during register allocation.
Note that this is something all targets should do, see
https://reviews.llvm.org/D38128.
Review: Simon Dardis
llvm-svn: 325870
This is combination of two patches by Nicholas Wilson:
1. https://reviews.llvm.org/D41954
2. https://reviews.llvm.org/D42495
Along with a few local modifications:
- One change I made was to add the UNDEFINED bit to the binary format
to avoid the extra byte used when writing data symbols. Although this
bit is redundant for other symbols types (i.e. undefined can be
implied if a function or global is a wasm import)
- I prefer to be explicit and consistent and not have derived flags.
- Some field renaming.
- Some reverting of unrelated minor changes.
- No test output differences.
Differential Revision: https://reviews.llvm.org/D43147
llvm-svn: 325860
We won't be able to fold the constant pool load, but its still better than materialing ones and xoring for the invert if we used PCMPEQ.
This will fix another regression from D42948.
llvm-svn: 325845
Move checks for each fusion case into separate functions for better
legibility and maintainability.
Differential revision: https://reviews.llvm.org/D43649
llvm-svn: 325844
isCondCodeLegal internally checked Legal or Custom which is misleading. Though no targets set any cond code action to Custom today.
So I've renamed isCondCodeLegal to isCondCodeLegalOrCustom and added a real isCondCodeLegal that only checks Legal.
I've changed legalization code to use isCondCodeLegalOrCustom and left things reachable via DAG combine as isCondCodeLegal. I've also changed some places that called getCondCodeAction and compared to Legal to just use isCondCodeLegal.
I'm looking at trying to keep SETCC all the way to isel for the AVX512 integer comparisons and I suspect I'll need to make some condition codes Custom to stop DAG combine from changing things post LegalizeOps. Prior to this only Expand stopped DAG combine, but that causes LegalizeOps to try to swap operands or invert rather than calling our Custom handler.
Differential Revision: https://reviews.llvm.org/D43607
llvm-svn: 325829
Previously this code overrode the flags and opcode used by the later code in LowerVSETCC. This makes the code difficult to read and follow.
This patch moves all the SUBUS code into its own function and makes it responsible for creating its own SDNodes on success.
Differential Revision: https://reviews.llvm.org/D43530
llvm-svn: 325827
This patch reverts r325440 and r325438 because it triggers an
assertion in SelectionDAGBuilder.cpp. Also having debug enabled
may unintentionally affect code-gen. The patch is reverted until
we find a better solution.
llvm-svn: 325825
Summary:
The current integer representation of relative block frequency prevents
representing relative block frequencies below 1. This change uses a 8 of
the 29 bits to represent the decimal part by using a fixed scale of -8.
Reviewers: tejohnson, davidxl
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D43520
llvm-svn: 325823
When DataFlowSanitizer transforms a call to a custom function, the
new call has extra parameters. The attributes on parameters must be
updated to take the new position of each parameter into account.
Patch by Sam Kerner!
Differential Revision: https://reviews.llvm.org/D43132
llvm-svn: 325820
Summary:
ThinLTO indexing may decide to skip all objects. If we don't write something to
the list build system may consider this as failure or linker can reuse a file
from the previews build.
Reviewers: pcc, tejohnson
Subscribers: mehdi_amini, inglorion, eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D43415
llvm-svn: 325819
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
AlignmentFromAssumptions pass to cease using the old getAlignment()/setAlignment API of
MemoryIntrinsic in favour of getting/setting source & dest specific alignments through
the new API. This allows us to simplify some of the code in this pass and also be more
aggressive about setting the source and destination alignments separately.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
Reviewers: hfinkel, bollu, reames
Reviewed By: reames
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D43081
llvm-svn: 325816
This allows us to improve vector constant matching in more DAG code (backends, TargetLowering etc.).
Differential Revision: https://reviews.llvm.org/D43466
llvm-svn: 325815
Extension to D12776, handle modulo by zero in the same way we handle divide by zero.
Differential Revision: https://reviews.llvm.org/D43631
llvm-svn: 325810
Summary:
If there is no debug info for macros, do not emit labels for empty
macinfo sections.
Reviewers: probinson, echristo
Subscribers: aprantl, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43589
llvm-svn: 325803
Summary:
Both of these errors should have been caught by type-checking during
parsing.
Change-Id: I891087936fd1a91d21bcda57c256e3edbe12b94d
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43558
llvm-svn: 325800
Summary:
Perhaps the distinction between the two should be removed entirely
in the long term, and the [{ ... }] syntax should just be a convenient
way of writing multi-line strings.
In the meantime, a lot of existing .td files are quite relaxed about
string vs. code, and this change allows switching on more consistent
type checks without breaking those.
Change-Id: If85e3e04469e41b58e2703b62ac0032d2711713c
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43557
llvm-svn: 325799
Summary:
There are no new test cases, but a subsequent patch will introduce
assertions that would be triggered by existing test cases without this
fix.
Change-Id: I6a82d4b311b012aff3932978ae86f6a2dcfbf725
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43556
llvm-svn: 325798
Summary:
In the case of !foreach(id, input-list, transform) where the type of
input-list is list<A> and the type of transform is B, we now correctly
deduce list<B> as the type of the !foreach.
Change-Id: Ia19dd65eecc5991dd648280ba6a15f6a20fd61de
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43555
llvm-svn: 325797
Summary:
This way, it should work even with complex operands.
Change-Id: Iaccf5bbb50bd5882a0ba5d59689e4381315fb361
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43554
llvm-svn: 325796
Summary:
.NAME is a bit of an odd duck, in that we should really treat it like
a template argument, but we currently don't, and so when and where
NAME is initialized and how is pretty inconsistent. Best to just avoid
using it as a field of already instantiated records, and use cast to
string instead.
Change-Id: I5a0c202401cede3d5c3827ab9c7858ea48b29108
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D43551
llvm-svn: 325794
Implement c.lui immediate constraint to [1, 31] and [0xfffe0, 0xfffff].
The RISC-V ISA describes the constraint as [1, 63], with that value
being loaded in to bits 17-12 of the destination register and sign extended
from bit 17. Therefore, this 6-bit immediate can represent values in the
ranges [1, 31] and [0xfffe0, 0xfffff].
Differential Revision: https://reviews.llvm.org/D42834
llvm-svn: 325792
- Fix for bug 36078.
- Prevent the functionattrs, function-attrs, globalopt and argpromotion passes
from changing naked functions.
- These passes can perform some alterations to the functions that should not be
applied. An example is removing parameters that are seemingly not used because
they are only referenced in the inline assembly. Another example is marking
the function as fastcc.
llvm-svn: 325788
There were no memory dependencies made between stores generated
when lowering formal arguments and loads generated when
call lowering byVal arguments which made the Post-RA scheduler
place a load before a matching store.
Make the fixed object stored to mutable so that the load
instructions can have their memory dependencies added
Set the frame object as isAliased which clears the underlying
objects vector in ScheduleDAGInstrs::buildSchedGraph().
This results in addition of all stores as dependenies for loads.
This problem appeared when passing a byVal parameter
coupled with a fastcc function call.
Differential Revision: https://reviews.llvm.org/D37515
llvm-svn: 325782
NFC intended, syndicate common code to a parametric base class. Part of the original problem is that InvokeInst is a TerminatorInst, unlike CallInst. the problem is solved by introducing a parametrized class paramtertized by its base.
Differential Revision: https://reviews.llvm.org/D40727
llvm-svn: 325778
As pointed out by @sabuasal in a comment on D23568, the logic in
RISCVMCCodeEmitter::getImmOpValue could be more defensive. Although with the
current instruction definitions it is always the case that `VK_RISCV_LO` is
always used with either an I- or S-format instruction, this may not always be
the case in the future. Add a check to ensure we will get an assertion in
debug builds if that changes.
llvm-svn: 325775
Fixup to rL325573 for large xor constants.
Thanks to Eli Friedman for the catch.
Differential revision: https://reviews.llvm.org/D43549
llvm-svn: 325761
This is a follow up of r325012, that allowed half types in constant pools.
Proper alignment was enforced when a big basic block was split up, but not when
a CPE was placed before/after a block; the successor block had the wrong
alignment.
Differential Revision: https://reviews.llvm.org/D43580
llvm-svn: 325754
We looked through a BITCAST, but the bitcast might be a from a scalar type rather than a vector.
I don't have a test case. I stumbled onto it while prototyping another change that isn't ready yet.
llvm-svn: 325750
Summary:
Exposing getOffset and findFunctionSamples as members of
SampleProfile. They are intimately tied to design choices of the
sample profile format - using offsets instead of line numbers, and
traversing inlined functions stack, respectively.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43605
llvm-svn: 325747
SCEV has multiple occurences of code when we need to prove some predicate on
every iteration of a loop and do it with invocations of couple `isLoopEntryGuardedByCond`,
`isLoopBackedgeGuardedByCond`. This patch factors out these two calls into a separate
method. It is a preparation step to extend this logic: it is not the only way how we can prove
such conditions.
Differential Revision: https://reviews.llvm.org/D43373
llvm-svn: 325745
An FRem instruction inside a loop should prevent the loop from being converted
into a CTR loop since this is not an operation that is legal on any PPC
subtarget. This will always be a call to a library function which means the
loop will be invalid if this instruction is in the body.
Fixes PR36292.
llvm-svn: 325739
According to the current coverage report salvageDebugInfo() is called
5.12 million times during testing and almost always returns early.
The early return depends on LocalAsMetadata::getIfExists returning null,
which involves a DenseMap lookup in an LLVMContextImpl. We can probably
speed this up by simply checking the IsUsedByMD bit in Value.
llvm-svn: 325738
The pahole does not work with BPF backend properly:
-bash-4.2$ cat test.c
struct test_t {
int a;
int b;
};
int test(struct test_t *s) {
return s->a;
}
-bash-4.2$ clang -g -O2 -target bpf -c test.c
-bash-4.2$ pahole test.o
struct clang version 7.0.0 (trunk 325446) (llvm/trunk 325464) {
clang version 7.0.0 (trunk 325446) (llvm/trunk 325464) clang version 7.0.0 (trunk 325446) (llvm/trunk 325464); /* 0 4 */
clang version 7.0.0 (trunk 325446) (llvm/trunk 325464) clang version 7.0.0 (trunk 325446) (llvm/trunk 325464); /* 4 4 */
/* size: 8, cachelines: 1, members: 2 */
/* last cacheline: 8 bytes */
};
-bash-4.2$
The reason is that BPF backend is not yet implemented in elfutils backend
https://github.com/threatstack/elfutils/tree/master/backends
and pahole depends on elfutils for dwarf parsing and resolving relocation.
More specifically, the unsupported relocation in .debug_info for type/member name
against symbol table caused the incorrect result above. The following is
the raw .rel.debug_info for the above example,
Hex dump of section '.rel.debug_info':
0x00000000 06000000 00000000 0a000000 0b000000 ................
0x00000010 0c000000 00000000 0a000000 01000000 ................
0x00000020 12000000 00000000 0a000000 02000000 ................
0x00000030 16000000 00000000 0a000000 0e000000 ................
0x00000040 1a000000 00000000 0a000000 03000000 ................
----------------- -------- --------
reloc location type symtab index
Hex dump of section '.debug_info':
0x00000000 7b000000 04000000 00000801 00000000 {...............
0x00000010 0c000000 00000000 00000000 00000000 ................
0x00000020 00000000 00001000 00000200 00000000 ................
Based on "type", the proper value will be extracted from symbol table
and filled in .debug_info so later on .debug_info can be properly
resolved against debug strings.
There are two ways to fix this problem. One is to fix elfutils by adding
BPF support which is desirable. This could take a long time and won't work
with already deployed pahole. For a short term workaround, we can disable
dwarf cross-section relation which specifically avoids debug_info and
symbol table cross relocation. This should help any dwarf-related tool
which has not implement BPF specific relocations yet.
Now .rel.debug_info does not have any relocation for symbol table and
.debug_info itself contains necessary relocation information by itself.
Hex dump of section '.debug_info':
0x00000000 7b000000 04000000 00000801 00000000 {...............
0x00000010 0c003700 00000000 00003e00 00000000 ..7.......>.....
0x00000020 00000000 00001000 00000200 00000000 ................
location 0xc has 0, 0x12 has 0x37, 0x1a has 0x3e in place which
will be used in relocation resolution. Here, the values of 0, 0x37 and 0x3e
are offset in .debug_str section.
Please note the difference between two above .debug_info dumps.
With the fix, pahole works properly with BPF backend:
-bash-4.2$ clang -O2 -g -target bpf -c test.c
-bash-4.2$ pahole test.o
struct test_t {
int a; /* 0 4 */
int b; /* 4 4 */
/* size: 8, cachelines: 1, members: 2 */
/* last cacheline: 8 bytes */
};
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325735
The issue was that the has function was generating different results depending
on the signedness of char on the host platform. This commit fixes the issue by
explicitly using an unsigned char type to prevent sign extension and
adds some extra tests.
The original commit message was:
This patch implements a variant of the DJB hash function which folds the
input according to the algorithm in the Dwarf 5 specification (Section
6.1.1.4.5), which in turn references the Unicode Standard (Section 5.18,
"Case Mappings").
To achieve this, I have added a llvm::sys::unicode::foldCharSimple
function, which performs this mapping. The implementation of this
function was generated from the CaseMatching.txt file from the Unicode
spec using a python script (which is also included in this patch). The
script tries to optimize the function by coalescing adjecant mappings
with the same shift and stride (terms I made up). Theoretically, it
could be made a bit smarter and merge adjecant blocks that were
interrupted by only one or two characters with exceptional mapping, but
this would save only a couple of branches, while it would greatly
complicate the implementation, so I deemed it was not worth it.
Since we assume that the vast majority of the input characters will be
US-ASCII, the folding hash function has a fast-path for handling these,
and only whips out the full decode+fold+encode logic if we encounter a
character outside of this range. It might be possible to implement the
folding directly on utf8 sequences, but this would also bring a lot of
complexity for the few cases where we will actually need to process
non-ascii characters.
Reviewers: JDevlieghere, aprantl, probinson, dblaikie
Subscribers: mgorny, hintonda, echristo, clayborg, vleschuk, llvm-commits
Differential Revision: https://reviews.llvm.org/D42740
llvm-svn: 325732
than a shared ObjectFile/MemoryBuffer pair.
There's no need to pre-parse the buffer into an ObjectFile before passing it
down to the linking layer, and moving the parsing into the linking layer allows
us remove the parsing code at each call site.
llvm-svn: 325725
This patch changes hwasan inline instrumentation:
Fixes address untagging for shadow address calculation (use 0xFF instead of 0x00 for the top byte).
Emits brk instruction instead of hlt for the kernel and user space.
Use 0x900 instead of 0x100 for brk immediate (0x100 - 0x800 are unavailable in the kernel).
Fixes and adds appropriate tests.
Patch by Andrey Konovalov.
Differential Revision: https://reviews.llvm.org/D43135
llvm-svn: 325711
Summary:
IMAGE_REL_AMD64_ADDR32NB relocations are currently set to zero in all cases.
This patch sets the relocation to the correct value when possible and shows an error when not.
Reviewers: enderby, lhames, compnerd
Reviewed By: compnerd
Subscribers: LepelTsmok, compnerd, martell, llvm-commits
Differential Revision: https://reviews.llvm.org/D30709
llvm-svn: 325700
Enable multiple COPY hints to eliminate more COPYs during register allocation.
Note that this is something all targets should do, see
https://reviews.llvm.org/D38128.
Review: Krzysztof Parzyszek
llvm-svn: 325697
Global Dynamic and Local Dynamic call relocations only implicitly
reference __tls_get_addr; there is no connection in the ELF file between
the relocations and the symbol other than the specification for the
relocations' semantics. However, it still needs to be in the symbol
table despite the lack of explicit references to the symbol table entry,
since it needs to be bound at link time for these relocations, otherwise
any objects will fail to link.
For details, see https://sourceware.org/bugzilla/show_bug.cgi?id=22832.
Path by: James Clarke (jrtc27)
Differential revision: https://reviews.llvm.org/D43271
llvm-svn: 325688
of turning SCEVUnknowns of PHIs into AddRecExprs.
This feature is now hidden behind the -scev-version-unknown flag.
Fixes PR36032 and PR35432.
llvm-svn: 325687
This results in 15 additional unique source variables in a stage2 build
of FileCheck (at '-Os -g'), with a negligible increase in the size of
the .debug_loc section.
llvm-svn: 325660
Cannon Lake does not support CLWB, therefore it
does not include all features listed under SKX anymore.
Instead, enumerate all SKX features with the exception of CLWB.
Patch by Gabor Buella
Differential Revision: https://reviews.llvm.org/D43380
llvm-svn: 325654
This patch provides mitigation for CVE-2017-5715, Spectre variant two,
which affects the P5600 and P6600. It implements the LLVM part of
-mindirect-jump=hazard. It is _not_ enabled by default for the P5600.
The migitation strategy suggested by MIPS for these processors is to use
hazard barrier instructions. 'jalr.hb' and 'jr.hb' are hazard
barrier variants of the 'jalr' and 'jr' instructions respectively.
These instructions impede the execution of instruction stream until
architecturally defined hazards (changes to the instruction stream,
privileged registers which may affect execution) are cleared. These
instructions in MIPS' designs are not speculated past.
These instructions are used with the attribute +use-indirect-jump-hazard
when branching indirectly and for indirect function calls.
These instructions are defined by the MIPS32R2 ISA, so this mitigation
method is not compatible with processors which implement an earlier
revision of the MIPS ISA.
Performance benchmarking of this option with -fpic and lld using
-z hazardplt shows a difference of overall 10%~ time increase
for the LLVM testsuite. Certain benchmarks such as methcall show a
substantially larger increase in time due to their nature.
Reviewers: atanasyan, zoran.jovanovic
Differential Revision: https://reviews.llvm.org/D43486
llvm-svn: 325653
Summary:
We used to remove the first memmove in cases like this:
memmove(p, p+2, 8);
memmove(p, p+2, 8);
which is incorrect. Fix this by changing isPossibleSelfRead to what was most
likely the intended behavior.
Historical note: the buggy code was added in https://reviews.llvm.org/rL120974
to address PR8728.
Reviewers: rsmith
Subscribers: mcrosier, llvm-commits, jlebar
Differential Revision: https://reviews.llvm.org/D43425
llvm-svn: 325641
Spilling may cause previously non-empty intervals (both for the spilled vreg
and others) to become empty. Moving the pruning into initializeGraph catches
these cases and fixes PR33038.
llvm-svn: 325632
This is usually not a problem because this code's main purpose is
eliminating unused new/delete pairs. We got deletes of nullptr or
nobuiltin deletes of builtin new wrong though.
llvm-svn: 325630
This is split off from D42948 and includes just the cases that constant fold to true or false. It also includes some refactoring to keep predicate checks together.
This supports things like
(setcc uge X, 0) -> true
Differential Revision: https://reviews.llvm.org/D43489
llvm-svn: 325627
Get rid of icky goto loops and make the code easier to maintain. Otherwise,
NFC.
Restore r324903 and fix PR36369.
Differentail revision: https://reviews.llvm.org/D43364
llvm-svn: 325621
Summary:
With D43396, no clients use the Path parameter anymore.
Depends on D43396.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D43400
llvm-svn: 325619
SimplifyDemandedBits forces the demanded mask to all 1s if the node has multiple uses, unless the AssumeSingleUse flag is set.
So previously we were only really likely to simplify something if the condition had a single use. And on the off chance we did simplify with multiple uses the demanded mask being used was all ones so there was no reason to create a shrunkblend.
This patch now checks that the condition is only used by selects first, and then sets the AssumeSingleUse flag for the simplifcation. Then we convert the selects to shrunkblend, and finally replace condition.
Differential Revision: https://reviews.llvm.org/D43446
llvm-svn: 325604
DAGCombiner and SimplifySetCC both use getPointerTy for shift amounts pre-legalization. DAGCombiner uses a single helper function to hide this. SimplifySetCC does it in multiple places.
This patch adds a defaulted parameter to getShiftAmountTy that can make it return getPointerTy for scalar types. Use this parameter to simplify the SimplifySetCC and DAGCombiner.
Additionally, there were two places in SimplifySetCC that were creating shifts using the target's preferred shift amount pre-legalization. If the target uses a narrow type and the type is illegal, this can cause SimplfiySetCC to create a shift with an amount that can't represent all possible shift values for the type. To fix this we should use pointer type there too.
Alternatively we could make getScalarShiftAmountTy for each target return a safe value for large types as proposed in D43445. And maybe we should still do that, but fixing the SimplifySetCC code keeps other targets from tripping over this in the future.
Fixes PR36250.
Differential Revision: https://reviews.llvm.org/D43449
llvm-svn: 325602
This allows us to avoid an opsize prefix. And forcing some move immediates to i32 avoids a length changing prefix on those instructions.
This mostly replaces the existing combine we had for zext/sext+cmov of constants. I left in a case for sign extending a 32 bit cmov of constants to 64 bits.
Differential Revision: https://reviews.llvm.org/D43327
llvm-svn: 325601
These are fdiv-with-constant-divisor, so they already become
reciprocal multiplies. The last gap for vector ops should be
closed with rL325590.
It's possible that we're missing folds for some edge cases
with denormal intermediate constants after deleting these,
but there are no tests for those patterns, and it would be
better to handle denormals more consistently (and less
conservatively) as noted in TODO comments.
llvm-svn: 325595
An upcoming patch D41434, changes the ordering of the matcher table
for assembly. This patch corrects the definition of the normal MIPS
cvt.d.w not to be available in microMIPS.
llvm-svn: 325589
Current implementation always allocates the parameter save area conservatively
for fastcc functions. There is no reason to allocate the parameter save area if
all the parameters can be passed via registers.
Differential Revision: https://reviews.llvm.org/D42602
llvm-svn: 325581
ExpandUINT_TO_FLOAT can accept vXi32 or vXi64 inputs, so we need to use a uint64_t shift to generate the 2^(BW/2) constant.
No test case unfortunately as no upstream target uses this, but its affecting a downstream target.
llvm-svn: 325578
We can always convert xor %a, -1 into MVN, even in thumb 1 where the -1
would not otherwise be considered a cheap constant. This prevents the
-1's from being pulled out into constants and potentially hoisted.
Differential Revision: https://reviews.llvm.org/D43451
llvm-svn: 325573
For instructions like call foo and jmp foo patch changes
relocation produced from R_X86_64_PC32 to R_X86_64_PLT32.
Relocation can be used as a marker for 32-bit PC-relative branches.
Linker will reduce PLT32 relocation to PC32 if function is defined locally.
Differential revision: https://reviews.llvm.org/D43383
llvm-svn: 325569
Summary:
The machine instruction scheduler was illegally moving a buffer store
past a buffer load with the same descriptor and offset. Fixed by marking
buffer ops as mayAlias and isAliased. This may be overly conservative,
and we may need to revisit.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D43332
Change-Id: Iff3173d9e0653e830474546276ab9d30318b8ef7
llvm-svn: 325567
llvm-mc can crash when
there is cfi_startproc without cfi_end_proc:
.text
.globl foo
foo:
.cfi_startproc
Testcase shows the issue, patch fixes it.
Differential revision: https://reviews.llvm.org/D43456
llvm-svn: 325564
The 128 and 256 bit versions were already not used by clang. This adds an equivalent unmasked 512 bit version. Then autoupgrades all sizes to use unmasked intrinsics plus select.
llvm-svn: 325559
This is the second part of recommit of r325224. The previous part was
committed in r325426, which deals with C++ memory allocation. Solution
for C memory allocation involved functions `llvm::malloc` and similar.
This was a fragile solution because it caused ambiguity errors in some
cases. In this commit the new functions have names like `llvm::safe_malloc`.
The relevant part of original comment is below, updated for new function
names.
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
In some cases memory is allocated by a call to some of C allocation
functions, malloc, calloc and realloc. They are used for interoperability
with C code, when allocated object has variable size and when it is
necessary to avoid call of constructors. In many calls the result is not
checked for null pointer. To simplify checks, new functions are defined
in the namespace 'llvm': `safe_malloc`, `safe_calloc` and `safe_realloc`.
They behave as corresponding standard functions but produce fatal error if
allocation fails. This change replaces the standard functions like 'malloc'
in the cases when the result of the allocation function is not checked
for null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statement is added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325551
This is a follow on commit to r[x] where we fix the other direction of copy.
For this case, after converting the source from gpr32 -> fpr32, we use a
subregister copy, which is essentially what EXTRACT_SUBREG does in SDAG land.
https://reviews.llvm.org/D43444
llvm-svn: 325550
Previously we used vptestmd, but the scheduling data for SKX says vpmovq2m/vpmovd2m is lower latency. We already used vpmovb2m/vpmovw2m for byte/word truncates. So this is more consistent anyway.
llvm-svn: 325534
It's possible that we could allow this either 'arcp' or 'reassoc' alone, but this
should be conservatively better than what we have right now. GCC allows this with
only -freciprocal-math.
The last test is changed to show a case that is expected to fold, but we need D43398.
llvm-svn: 325533
Summary:
Several for loops in PromoteMemoryToRegister.cpp leave their increment
expression empty, instead incrementing the iterator within the for loop
body. I believe this is because these loops were previously implemented
as while loops; see https://reviews.llvm.org/rL188327.
Incrementing the iterator within the body of the for loop instead of
in its increment expression makes it seem like the iterator will be
modified or conditionally incremented within the loop, but that is not
the case in these loops.
Instead, use range loops.
Test Plan: `check-llvm`
Reviewers: davide, bkramer
Reviewed By: davide, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43473
llvm-svn: 325532
The last fold that used to be here was not necessary. That's a
combination of 2 folds (and there's a regression test to show that).
The transforms are guarded by isFast(), but that should be loosened.
llvm-svn: 325531
Summary:
Move a debug statement to above where an assertion is hit, so that the debug
statement can be inspected before a stack trace.
Test Plan: `check-llvm`
llvm-svn: 325529
We swapped the operands and used setle, but I don't see any reason to do that. I think this is a holdover from SSE where we swap and the invert to use pcmpgt. But with AVX512 we don't want an invert so we won't use pcmpgt. So there's no need to swap.
llvm-svn: 325527
Canonicalize EQ/NE PCMPM to have build vector all zeros on the RHS so we don't have to pattern match it in both locations. This significantly reduces the number of isel patterns needed since we also had to multiply it out with loads being in either operand of the 'and' input node and in the 'and' masking node.
This removes over 24000 bytes from the isel table.
llvm-svn: 325526
Summary: The discussion and as per need, each vendor needs a way to keep the old fast flags and the new fast flags in the auto upgrade path of the IR upgrader. This revision addresses that issue.
Patched by Michael Berg
Reviewers: qcolombet, hans, steven_wu
Reviewed By: qcolombet, steven_wu
Subscribers: dexonsmith, vsk, mehdi_amini, andrewrk, MatzeB, wristow, spatel
Differential Revision: https://reviews.llvm.org/D43253
llvm-svn: 325525