This changes DwarfContext to delegate to DwarfObject instead of having
pure virtual methods.
With this DwarfContextInMemory is replaced with an implementation of
DwarfObject that is local to a .cpp file.
llvm-svn: 308543
Summary:
This patch modifies the handleDebugInfo() function so that we verify the contents of each unit
in the .debug_info section only if its header has been successfully verified.
This change will allow for more/different verification checks depending on the type of the unit since from
dwarf5, the .debug_info section may consist of different types of units.
Subscribers: aprantl
Differential Revision: https://reviews.llvm.org/D35521
llvm-svn: 308245
Summary:
This removes the CVTypeVisitor updater and verifier classes. They were
made dead by the minimal type dumping refactoring. Replace them with a
single function that takes a type record and produces a hash. Call this
from the minimal type dumper and compare the hash.
I also noticed that the microsoft-pdb reference repository uses a basic
CRC32 for records that aren't special. We already have an implementation
of that CRC ready to use, because it's used in COFF for ICF.
I'll make LLD call this hashing utility in a follow-up change. We might
also consider using this same hash in type stream merging, so that we
don't have to hash our records twice.
Reviewers: inglorion, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35515
llvm-svn: 308240
Summary:
We were treating the GUIDs in TypeServer2Record as strings, and the
non-ASCII bytes in the GUID would not round-trip through YAML.
We already had the PDB_UniqueId type portably represent a Windows GUID,
but we need to hoist that up to the DebugInfo/CodeView library so that
we can use it in the TypeServer2Record as well as in PDB parsing code.
Reviewers: inglorion, amccarth
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35495
llvm-svn: 308234
Summary:
This didn't do much to speed things up, but it implements a FIXME, and I
think it's a nice simplification. We don't need the record kind switch.
We're doing that ourselves.
Reviewers: ruiu, inglorion
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35496
llvm-svn: 308213
Summary:
Instead of wiring these through the CVTypeVisitor interface, clients
should inspect the CVTypeArray before visiting it and potentially load
up the type server's TPI stream if they need it.
No tests relied on this functionality because LLD was the only client.
Reviewers: ruiu
Subscribers: mgorny, hiraditya, zturner, llvm-commits
Differential Revision: https://reviews.llvm.org/D35394
llvm-svn: 308212
This patch adds verification checks for the unit header chain in the .debug_info section.
Specifically, for each unit in the .debug_info section, the verifier checks that:
The unit length is valid (i.e. the unit can actually fit in the .debug_info section)
The dwarf version of the unit is valid
The address size is valid (4 or 8)
The unit type (if the unit is in dwarf5) is valid
The debug_abbrev_offset is valid
llvm-svn: 307975
Summary:
This fixes type indices for SDK or CRT static archives. Previously we'd
try to look next to the archive object file path, which would not exist
on the local machine.
Also error out if we can't resolve a type server record. Hypothetically
we can recover from this error by discarding debug info for this object,
but that is not yet implemented.
Reviewers: ruiu, amccarth
Subscribers: aprantl, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D35369
llvm-svn: 307946
Code to convert MachO - specific section debug section names to standard DWARF v5
section names was in the wrong place.
Differential Revision: https://reviews.llvm.org/D35321
llvm-svn: 307872
Doing so is leaking an implementation detail.
I have an implementation that uses the lld infrastructure and doesn't
use a map or object::SectionRef.
llvm-svn: 307846
Summary:
There is a reserved range of type indexes for built-in types (like integers).
This will create a symbol for a built-in type if the caller askes for one by
type index. This is also plumbing for being able to recall symbols by type
index in general, but user-defined types will come in subsequent patches.
Reviewers: rnk, zturner
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D35163
llvm-svn: 307834
Avoid duplicating DictScope with hand-written names everywhere. Print
the S_-prefixed symbol kind for every record. This should make it easier
to search for certain kinds of records when debugging PDB linking.
llvm-svn: 307732
I encountered these when linking LLD, which uses atls.lib. Those objects
appear to use these uncommon symbol records:
0x115E S_HEAPALLOCSITE
0x113D S_ENVBLOCK
0x1113 S_GTHREAD32
0x1153 S_FILESTATIC
llvm-svn: 307725
This is part of the continuing effort to increase parity between
LLD and MSVC PDBs. link still doesn't like our PDBs, so the most
obvious thing to check was whether adding an empty publics stream
would get it to do something else. It still fails in the same way
but at least this removes one more variable from the equation.
The next logical step would be to try creating an empty globals
stream.
Differential Revision: https://reviews.llvm.org/D35224
llvm-svn: 307598
Variable was called 'Name' and contained text
name of relocation type. Problem was that
outside of this error handling scope we already
have different 'Name' variable that contains
section name.
Change helps to avoid confusion.
llvm-svn: 307530
1) Don't write a /src/headerblock stream. This appears to be
written conditionally by MSVC, but it's not clear what the
condition is. For now, just remove it since we dont' know
what it is anyway and the particular pdb we've checked in
for the test doesn't have one.
2) Write a valid timestamp for the PDB file signature. This
leads to non-reproducible builds, but it matches the default
behavior of link, so it should be out default as well. If
we need reproducibility, we should add a separate command
line option for it that is off by default.
3) Write an empty FPO stream. MSVC seems to always write an
FPO stream. This change makes the stream directory match
up, although we still need to make the contents of the FPO
stream match.
llvm-svn: 307436
A couple of things were different about our generated PDBs.
1) We were outputting the wrong Version on the PDB Stream.
The version we were setting was newer than what MSVC is setting.
It's not clear what the implications are, but we change LLD
to use PdbImplVC70, as MSVC does.
2) For the optional debug stream indices in the DBI Stream, we
were outputting 0 to mean "the stream is not present". MSVC
outputs uint16_t(-1), which is the "correct" way to specify
that a stream is not present. So we fix that as well.
3) We were setting the PDB Stream signature to 0. This is supposed
to be the result of calling time(nullptr). Although this leads
to non-deterministic builds, a better way to solve that is by
having a command line option explicitly for generating a
reproducible build, and have the default behavior of lld-link
match the default behavior of link.
To test this, I'm making use of the new and improved `pdb diff`
sub command. To make it suitable for writing tests against, I had
to modify the diff subcommand slightly to print less verbose output.
Previously it would always print | <column> | <value1> | <value2> |
which is quite verbose, and the values are fragile. All we really
want to know is "did we produce the same value as link?" So I added
command line options to print a single character representing the
result status (different, identical, equivalent), and another to
hide the value display. Note that just inspecting the diff output
used to write the test, you can see some things that are obviously
wrong. That is just reflective of the fact that this is the state
of affairs today, not that we're asserting that this is "correct".
We can use this as a starting point to discover differences, fix
them, and update the test.
Differential Revision: https://reviews.llvm.org/D35086
llvm-svn: 307422
We're getting to the point that some MS tools (e.g. DIA) can recognize
our PDBs but others (e.g. link.exe) cannot. I think the way forward is
to improve our tooling to help us find differences more easily. For
example, if we can compile the same program with clang-cl and cl and
have a tool tell us all the places where the PDBs differ, this could
tell us what we're doing wrong. It's tricky though, because there are a
lot of "benign" differences in a PDB. For example, if the string table
in one PDB consists of "foo" followed by "bar" and in the other PDB it
consists of "bar" followed by "foo", this is not necessarily a critical
difference, as long as the uses of these strings also refer to the
correct location. On the other hand, if the second PDB doesn't even
contain the string "foo" at all, this is a critical difference.
diff mode has been in llvm-pdbutil for quite a while, but because of the
above challenge along with some others, it's been hard to make it
useful. I think this patch addresses that. It looks for all the same
things, but it now prints the output in tabular format (carefully
formatted and aligned into tables and fields), and it highlights
critical differences in red, non-critical differences in yellow, and
identical fields in green. This makes it easy to spot the places we
differ, and the general concept of outputting arbitrary fields in
tabular format can be extended to provide analysis into many of the
different types of information that show up in a PDB.
Differential Revision: https://reviews.llvm.org/D35039
llvm-svn: 307421
Based strictly on the name, this seems to have something to do
width edit & continue. The goal of this patch has nothing to do
with supporting edit and continue though. msvc link.exe writes
very basic information into this area even when *not* compiling
with support for E&C, and so the goal here is to bring lld-link
to parity. Since we cannot know what assumptions standard tools
make about the content of PDB files, we need to be as close as
possible.
This ECNames data structure is a standard PDB string hash table.
link.exe puts a single string into this hash table, which is the
full path to the PDB file on disk. It then references this string
from the module descriptor for the compiler generated `* Linker *`
module.
With this patch, lld-link will generate the exact same sequence of
bytes as MSVC link for this subsection for a given object file
input (as reported by `llvm-pdbutil bytes -ec`).
llvm-svn: 307356
Type records have a unique type index, but symbol records do
not. Instead, symbol records refer to other symbol records
by referencing their offset in the symbol stream. In a sense
this is the analogue of the TypeIndex, but we are not printing
it in the dumper. Printing it not only gives us more useful
information when manually investigating the contents of a PDB,
but also allows us to write better tests by enabling us to
verify that fields that reference other symbol records do
so correctly.
Differential Revision: https://reviews.llvm.org/D34906
llvm-svn: 306890
Previously we had the -type-index option which would dump the record of
a single, but we had no way to follow the dependency graph backwards and
also dump all dependent types.
Having this option makes test-writing better, because we can limit the
test to only those records that are of importance for the thing we're
trying to test, which allows us to use things like CHECK-NEXT to reduce
fragility.
Differential Revision: https://reviews.llvm.org/D34899
llvm-svn: 306852
This patch verifies the number of atoms, the validity of the form for each atom, as well as the validity of the
hashdata. For hashdata, we're verifying that the hashdata offset is correct and that the offset in the .debug_info for
each DIE in the hashdata is also valid.
llvm-svn: 306735
Requires callers to directly associate relocations with a DataExtractor
used to read data from a DWARF section, which helps a callee not make
assumptions about which section it is reading.
This is the next step in reducing DWARFFormValue's dependence on DWARFUnit.
Differential Revision: https://reviews.llvm.org/D34704
llvm-svn: 306699
Because of mistake introduced in r306517,
wrong variable ("name" instead of "Name") was used
in error message.
As a result it reported section name instead of
relocation name.
This file still needs cleanup to match LLVM coding style
and more tests I think.
llvm-svn: 306677
Instead of creating symbols directly in the findChildren methods of the native
symbol implementations, they will rely on the NativeSession to act as a factory
for these types. This lets NativeSession cache the NativeRawSymbols in its
new symbol cache and makes that cache the source of unique IDs for the symbols.
Right now, this affects only NativeCompilandSymbols. There's no external
change yet, so I think the existing tests are still sufficient. Coming soon
are patches to extend this to built-in types and enums.
llvm-svn: 306610
With fix in include folder character case:
#include "llvm/Codegen/AsmPrinter.h" -> #include "llvm/CodeGen/AsmPrinter.h"
Original commit message:
Change introduces error reporting policy for DWARFContextInMemory.
New callback provided by client is able to handle error on it's
side and return Halt or Continue.
That allows to either keep current behavior when parser prints all errors
but continues parsing object or implement something very different, like
stop parsing on a first error and report an error in a client style.
Differential revision: https://reviews.llvm.org/D34328
llvm-svn: 306517
Change introduces error reporting policy for DWARFContextInMemory.
New callback provided by client is able to handle error on it's
side and return Halt or Continue.
That allows to either keep current behavior when parser prints all errors
but continues parsing object or implement something very different, like
stop parsing on a first error and report an error in a client style.
Differential revision: https://reviews.llvm.org/D34328
llvm-svn: 306512
Some forms have sizes that depend on the DWARF version, DWARF format
(32/64-bit), or the size of an address. Collect these into a struct
to simplify passing them around. Require callers to provide one when
they query a form's size.
Differential Revision: http://reviews.llvm.org/D34570
llvm-svn: 306315
If you dump a pdb to yaml, and then round-trip it back to a pdb,
and run cvdump -l <file> on the new pdb, cvdump will generate
output such as this.
*** LINES
** Module: "d:\src\llvm\test\DebugInfo\PDB\Inputs\empty.obj"
Error: Line number corrupted: invalid file id 0
<Unknown> (MD5), 0001:00000010-0000001A, line/addr pairs = 3
5 00000010 6 00000013 7 00000018
Note the error message about the corrupted line number.
It turns out that the problem is that cvdump cannot find the
/names stream (e.g. the global string table), and the reason it
can't find the /names stream is because it doesn't understand
the NameMap that we serialize which tells pdb consumers which
stream has the string table.
Some experimentation shows that if we add items to the hash
table in a specific order before serializing it, cvdump can read
it. This suggests that either we're using the wrong hash function,
or we're serializing something incorrectly, but it will take some
deeper investigation to figure out how / why. For now, this at
least allows cvdump to read our line information (and incidentally,
produces an identical byte sequence to what Microsoft tools
produce when writing the named stream map).
Differential Revision: https://reviews.llvm.org/D34491
llvm-svn: 306233
This patch dumps the raw bytes of the pdb name map which contains
the mapping of stream name to stream index for the string table
and other reserved streams.
llvm-svn: 306148
The goal here is to make it possible to display absolute
file offsets when dumping byets from an MSF. The problem is
that when dumping bytes from an MSF, often the bytes will
cross a block boundary and encounter a discontinuity. We
can't use the normal formatBinary() function for this because
this would just treat the sequence as entirely ascending, and
not account out-of-order blocks.
This patch adds a formatMsfData() function to our printer, and
then uses this function to improve the output of the -stream-data
command line option for dumping bytes from a particular stream.
Test coverage is also expanded to make sure to include all possible
scenarios of offsets, sizes, and crossing block boundaries.
llvm-svn: 306141
All NativeRawSymbols will have a unique symbol ID (retrievable via
getSymIndexId). For now, these are initialized to 0, but soon the
NativeSession will be responsible for creating the raw symbols, and it will
assign unique IDs.
The symbol cache in the NativeSession will also require the ability to clone
raw symbols, so I've provided implementations for that as well.
llvm-svn: 306042
There doesn't seem to be a compelling reason why this method should be const
other than it was possible with the DIA implementation. The native session
is going to act as a symbol factory and cache. This could be acheived with
mutable (and the existing const_cast), but it seems cleaner to accept that
this method affects the state of the session.
This change eliminates an existing const_cast.
llvm-svn: 306041
Summary:
The main complexity in adding symbol records is that we need to
"relocate" all the type indices. Type indices do not have anything like
relocations, an opaque data structure describing where to find existing
type indices for fixups. The linker just has to "know" where the type
references are in the symbol records. I added an overload of
`discoverTypeIndices` that works on symbol records, and it seems to be
able to link the standard library.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34432
llvm-svn: 305933
There were certain fields that we didn't know how to write, as
well as various padding bytes that we would ignore. This leads
to garbage data in the PDB. While not strictly necessary, we
should initialize these bytes to something meaningful, as it
makes for easier binary comparison between PDBs.
llvm-svn: 305819
Summary:
This is a first step towards getting line info to show up in VS and
windbg. So far, only llvm-pdbutil can parse the PDBs that we produce.
cvdump doesn't like something about our file checksum tables. I'll have
to dig into that next.
This patch adds a new DebugSubsectionRecordBuilder which takes bytes
directly from some other producer, such as a linker, and sticks it into
the PDB. Line tables only need to be relocated. No data needs to be
rewritten.
File checksums and string tables, on the other hand, need to be re-done.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34257
llvm-svn: 305713
Merge the functionality into the random access type collection.
This class was only being used in 2 places, so getting rid of it
simplifies the code.
llvm-svn: 305653
Suppose we had a type index offsets array with a boundary at type index
N. Then you request the name of the type with index N+1, and that name
requires the name of index N-1 (think a parameter list, for example). We
didn't handle this, and we would print something like (<unknown UDT>,
<unknown UDT>).
The fix for this is not entirely trivial, and speaks to a larger
problem. I think we need to kill TypeDatabase, or at the very least kill
TypeDatabaseVisitor. We need a thing that doesn't do any caching
whatsoever, just given a type index it can compute the type name "the
slow way". The reason for the bug is that we don't have anything like
that. Everything goes through the type database, and if we've visited a
record, then we're "done". It doesn't know how to do the expensive thing
of re-visiting dependent records if they've not yet been visited.
What I've done here is more or less copied the code (albeit greatly
simplified) from TypeDatabaseVisitor, but wrapped it in an interface
that just returns a std::string. The logic of caching the name is now in
LazyRandomTypeCollection. Eventually I'd like to move the record
database here as well and the visited record bitfield here as well, at
which point we can actually just delete TypeDatabase. I don't see any
reason for it if a "sequential" collection is just a special case of a
random access collection with an empty partial offsets array.
Differential Revision: https://reviews.llvm.org/D34297
llvm-svn: 305612
The verifier should not output any message in such a case.
Added test case with no .apple_name section in the file to verify new functionality.
Made existing test case more specific.
llvm-svn: 305597
This resubmits commit c0c249e9f2ef83e1d1e5f166b50673d92f3579d7.
It was broken due to some weird template issues, which have
since been fixed.
llvm-svn: 305517
This reverts commit 83ea17ebf2106859a51fbc2a86031b44d33696ad.
This is failing due to some strange template problems, so reverting
until it can be straightened out.
llvm-svn: 305505
After some internal discussions, we agreed that the raw output style had
outlived its usefulness. It was originally created before we had even
thought of dumping to YAML, and it was intended to give us some insight
into the internals of a PDB file. Now we have YAML mode which does
almost exactly this but is more powerful in that it can round-trip back
to a PDB, which the raw mode could not do. So the raw mode had become
purely a maintenance burden.
One option was to just delete it. However, its original goal was to be
as readable as possible while staying close to the "metal" - i.e.
presenting the output in a way that maps directly to the underlying file
format. We don't actually need that last requirement anymore since it's
covered by the yaml mode, so we could repurpose "raw" mode to actually
just be as readable as possible.
This patch implements about 80% of the functionality previously in raw
mode, but in a completely different style that is more akin to what
cvdump outputs. Records are very compressed, often times appearing on
just one line. One nice thing about this is that it makes full record
matching easier, because you can grep for indices, names, and leaf types
on a single line often.
See the tests for some examples of what the new output looks like.
Note that this patch actually regresses the functionality of raw mode in
a few areas, but only because the patch was already unreasonably large
and going 100% would have been even worse. Specifically, this patch is
missing:
The ability to dump module debug subsections (checksums, lines, etc)
The ability to dump section headers
Aside from that everything is here. While goign through the tests fixing
them all up, I found many duplicate tests. They've been deleted. In
subsequent patches I will go through and re-add the missing
functionality.
Differential Revision: https://reviews.llvm.org/D34191
llvm-svn: 305495
This was originally reverted because of some non-deterministic
failures on certain buildbots. Luckily ASAN eventually caught
this as a stack-use-after-scope, so the fix is included in
this patch.
llvm-svn: 305393
This is causing failures on linux bots with an invalid stream
read. It doesn't repro in any configuration on Windows, so
reverting until I have a chance to investigate on Linux.
llvm-svn: 305371
This allows us to use yaml2obj and obj2yaml to round-trip CodeView
symbol and type information without having to manually specify the bytes
of the section. This makes for much easier to maintain tests. See the
tests under lld/COFF in this patch for example. Before they just said
SectionData: <blob> whereas now we can use meaningful record
descriptions. Note that it still supports the SectionData yaml field,
which could be useful for initializing a section to invalid bytes for
testing, for example.
Differential Revision: https://reviews.llvm.org/D34127
llvm-svn: 305366
This patch adds code which verifies that each bucket in the .apple_names
accelerator table is either empty or has a valid hash index.
Differential Revision: https://reviews.llvm.org/D34177
llvm-svn: 305344
Summary:
Expose the module descriptor index and fill it in for section
contributions.
Reviewers: zturner
Subscribers: llvm-commits, ruiu, hiraditya
Differential Revision: https://reviews.llvm.org/D34126
llvm-svn: 305296
The last fix required the user to manually add the required
feature. This caused an LLD test to fail because I failed to
update LLD. In practice we can hide this logic so it can just
be transparently added when we write the PDB.
llvm-svn: 305236
Older PDBs don't have this. Its presence is detected by using
the various "feature" flags that come at the end of the PDB
Stream. Detect this, and don't try to dump the ID stream if the
features tells us it's not present.
llvm-svn: 305235
Static data members were causing a problem because I mistakenly
assumed all members would affect a class's layout and so the
Layout member would be non-null.
llvm-svn: 305229
Previously extractors tried to be stateless with any additional
context information needed in order to parse items being passed
in via the extraction method. This led to quite cumbersome
implementation challenges and awkwardness of use. This patch
brings back support for stateful extractors, making the
implementation and usage simpler.
llvm-svn: 305093
Summary:
RelocOffset is a 32-bit value, but we previously truncated it to 16 bits.
Fixes PR33335.
Reviewers: zturner, hiraditya!
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33968
llvm-svn: 305043
This adds support for Symbols, StringTable, and FrameData subsection
types. Even though these subsections rarely if ever appear in a PDB
file (they are usually in object files), there's no theoretical reason
why they *couldn't* appear in a PDB. The real issue though is that in
order to add support for dumping and writing them (which will be useful
for object files), we need a way to test them. And since there is no
support for reading and writing them to / from object files yet, making
PDB support them is the best way to both add support for the underlying
format and add support for tests at the same time. Later, when we go
to add support for reading / writing them from object files, we'll need
only minimal changes in the underlying read/write code.
llvm-svn: 305037
This is the same change for the YAML Output style applied to the
raw output style. Previously we would queue up all subsections
until every one had been read, and then output them in a pre-
determined order. This was because some subsections need to be
read first in order to properly dump later subsections. This
patch allows them to be dumped in the order they appear.
Differential Revision: https://reviews.llvm.org/D34015
llvm-svn: 305034
Apparently support for /debug:fastlink PDBs isn't part of the
DIA SDK (!), and it was causing llvm-pdbdump to crash because
we weren't checking for a null pointer return value. This
manifests when calling findChildren on the IDiaSymbol, and
it returns E_NOTIMPL.
llvm-svn: 304982
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
This patch introduces a new command line option, called brief, to
llvm-dwarfdump. When -brief is used, the attribute forms for the
.debug_info section will not be emitted to output.
Patch by Spyridoula Gravani!
rdar://problem/21474365
Differential Revision: https://reviews.llvm.org/D33867
llvm-svn: 304844
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
While it's not entirely clear why a compiler or linker might
put this information into an object or PDB file, one has been
spotted in the wild which was causing llvm-pdbdump to crash.
This patch adds support for reading-writing these sections.
Since I don't know how to get one of the native tools to
generate this kind of debug info, the only test here is one
in which we feed YAML into the tool to produce a PDB and
then spit out YAML from the resulting PDB and make sure that
it matches.
llvm-svn: 304738
Previously MappedBlockStream owned its own BumpPtrAllocator that
it would allocate from when a read crossed a block boundary. This
way it could still return the user a contiguous buffer of the
requested size. However, It's not uncommon to open a stream, read
some stuff, close it, and then save the information for later.
After all, since the entire file is mapped into memory, the data
should always be available as long as the file is open.
Of course, the exception to this is when the data isn't *in* the
file, but rather in some buffer that we temporarily allocated to
present this contiguous view. And this buffer would get destroyed
as soon as the strema was closed.
The fix here is to force the user to specify the allocator, this
way it can provide an allocator that has whatever lifetime it
chooses.
Differential Revision: https://reviews.llvm.org/D33858
llvm-svn: 304623
Previously we would expect certain subsections to appear
in a certain order because some subsections would reference
other subsections, but in practice we need to support
arbitrary orderings since some object file and PDB file
producers generate them this way. This also paves the
way for supporting Yaml <-> Object File conversion of
CodeView, since Object Files typically have quite a
large number of subsections in their debug info.
Differential Revision: https://reviews.llvm.org/D33807
llvm-svn: 304588
Object files have symbol records not aligned to any particular
boundary (e.g. 1-byte aligned), while PDB files have symbol
records padded to 4-byte aligned boundaries. Since they share
the same reading / writing code, we have to provide an option to
specify the alignment and propagate it up to the producer or
consumer who knows what the alignment is supposed to be for the
given container type.
Added a test for this by modifying the existing PDB -> YAML -> PDB
round-tripping code to round trip symbol records as well as types.
Differential Revision: https://reviews.llvm.org/D33785
llvm-svn: 304484
This commit introduces a structure that holds all the flags that
control the pretty printing of dwarf output.
Patch by Spyridoula Gravani!
Differential Revision: https://reviews.llvm.org/D33749
llvm-svn: 304446
This is the beginning of an effort to move the codeview yaml
reader / writer into ObjectYAML so that it can be shared.
Currently the only consumer / producer of CodeView YAML is
llvm-pdbdump, but CodeView can exist outside of PDB files, and
indeed is put into object files and passed to the linker to
produce PDB files. Furthermore, there are subtle differences
in the types of records that show up in object file CodeView
vs PDB file CodeView, but they are otherwise 99% the same.
By having this code in ObjectYAML, we can have llvm-pdbdump
reuse this code, while teaching obj2yaml and yaml2obj to use
this syntax for dealing with object files that can contain
CodeView.
This patch only adds support for CodeView type information
to ObjectYAML. Subsequent patches will add support for
CodeView symbol information.
llvm-svn: 304248
This adds implementations for Symbols and FrameData, and renames
the existing codeview::StringTable class to conform to the
DebugSectionStringTable convention.
llvm-svn: 304222
With fix of uninitialized variable.
Original commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 304078
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 304002
With fix of test compilation.
Initial commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section
which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses
with use of llvm::LoadedObjectInfo interface. We assigned file offsets as addressed.
Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason
of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well.
That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 303983
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section
which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses
with use of llvm::LoadedObjectInfo interface. We assigned file offsets as addressed.
Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason
of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well.
That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 303978
Merging two type streams is one of the most time consuming
parts of generating a PDB, and as such it needs to be as
fast as possible. The visitor abstractions used for interoperating
nicely with many different types of inputs and outputs have
been used widely and help greatly for testability and implementing
tools, but the abstractions build up and get in the way of
performance.
This patch removes all of the visitation stuff from the type
stream merger, essentially re-inventing the leaf / member switch
and loop, but at a very low level. This allows us many other
optimizations, such as not actually deserializing *any* records
(even member records which don't describe their own length), as
the operation of "figure out how long this record is" is somewhat
faster than "figure out how long this record *and* get all its
fields out". Furthermore, whereas before we had to deserialize,
re-write type indices, then re-serialize, now we don't have to
do any of those 3 steps. We just find out where the type indices
are and pull them directly out of the byte stream and re-write
them.
This is worth a 50-60% performance increase. On top of all other
optimizations that have been applied this week, I now get the
following numbers when linking lld.exe and lld.pdb
MSVC: 25.67s
Before This Patch: 18.59s
After This Patch: 8.92s
So this is a huge performance win.
Differential Revision: https://reviews.llvm.org/D33564
llvm-svn: 303935
Originally this was intended to be set up so that when linking
a PDB which refers to a type server, it would only visit the
PDB once, and on subsequent visitations it would just skip it
since all the records had already been added.
Due to some C++ scoping issues, this was not occurring and it
was revisiting the type server every time, which caused every
record to end up being thrown away on all subsequent visitations.
This doesn't affect the performance of linking clang-cl generated
object files because we don't use type servers, but when linking
object files and libraries generated with /Zi via MSVC, this means
only 1 object file has to be linked instead of N object files, so
the speedup is quite large.
llvm-svn: 303920
Previously, every time we wanted to serialize a field list record, we
would create a new copy of FieldListRecordBuilder, which would in turn
create a temporary instance of TypeSerializer, which itself had a
std::vector<> that was about 128K in size. So this 128K allocation was
happening every time. We can re-use the same instance over and over, we
just have to clear its internal hash table and seen records list between
each run. This saves us from the constant re-allocations.
This is worth an ~18.5% speed increase (3.75s -> 3.05s) in my tests.
Differential Revision: https://reviews.llvm.org/D33506
llvm-svn: 303919
Summary:
DbiStreamBuilder calculated the offset of the source file names inside
the file info substream as the size of the file info substream minus
the size of the file names. Since the file info substream is padded to
a multiple of 4 bytes, this caused the first file name to be aligned
on a 4-byte boundary. By contrast, DbiModuleList would read the file
names immediately after the file name offset table, without skipping
to the next 4-byte boundary. This change makes it so that the file
names are written to the location where DbiModuleList expects them,
and puts any necessary padding for the file info substream after the
file names instead of before it.
Reviewers: amccarth, rnk, zturner
Reviewed By: amccarth, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33475
llvm-svn: 303917
It was using the number of blocks of the entire PDB file as the number
of blocks of each stream that was created. This was only an issue in
the readLongestContiguousChunk function, which was never called prior.
This bug surfaced when I updated an algorithm to use this function and
the algorithm broke.
llvm-svn: 303916
A profile shows the majority of time doing type merging is spent
deserializing records from sequences of bytes into friendly C++ structures
that we can easily access members of in order to find the type indices to
re-write.
Records are prefixed with their length, however, and most records have
type indices that appear at fixed offsets in the record. For these
records, we can save some cycles by just looking at the right place in the
byte sequence and re-writing the value, then skipping the record in the
type stream. This saves us from the costly deserialization of examining
every field, including potentially null terminated strings which are the
slowest, even though it was unnecessary to begin with.
In addition, we apply another optimization. Previously, after
deserializing a record and re-writing its type indices, we would
unconditionally re-serialize it in order to compute the hash of the
re-written record. This would result in an alloc and memcpy for every
record. If no type indices were re-written, however, this was an
unnecessary allocation. In this patch re-writing is made two phase. The
first phase discovers the indices that need to be rewritten and their new
values. This information is passed through to the de-duplication code,
which only copies and re-writes type indices in the serialized byte
sequence if at least one type index is different.
Some records have type indices which only appear after variable length
strings, or which have lists of type indices, or various other situations
that can make it tricky to make this optimization. While I'm not giving up
on optimizing these cases as well, for now we can get the easy cases out
of the way and lay the groundwork for more complicated cases later.
This patch yields another 50% speedup on top of the already large speedups
submitted over the past 2 days. In two tests I have run, I went from 9
seconds to 3 seconds, and from 16 seconds to 8 seconds.
Differential Revision: https://reviews.llvm.org/D33480
llvm-svn: 303914
LazyRandomTypeCollection is designed for random access, and in
order to provide this it lazily indexes ranges of types. In the
case of types from an object file, there is no partial index
to build off of, so it has to index the full stream up front.
However, merging types only requires sequential access, and when
that is needed, this extra work is simply wasted. Changing the
algorithm to work on sequential arrays of types rather than
random access type collections eliminates this up front scan.
llvm-svn: 303707
When writing field list records, we would construct a temporary
type serializer that shared a bump ptr allocator with the rest
of the application, so anything allocated from here would live
forever. Furthermore, this temporary serializer had all the
properties of a full blown serializer including record hashing
and de-duplication.
These features are required when you're merging multiple type
streams into each other, because different streams may contain
identical records, but records from the same type stream will
never collide with each other. So all of this hashing was
unnecessary.
To solve this, two fixes are made:
1) The temporary serializer keeps its own bump ptr allocator
instead of sharing a global one. When it's finished, all of
its memory is freed.
2) Instead of using the same temporary serializer for the life
of an entire type stream, we use it only for the life of a single
field list record and delete it when the field list record is
completed. This way the hash table will not grow as other
records from the same type stream get inserted. Further improvements
could eliminate hashing entirely from this codepath.
This reduces the link time by 85% in my test, from 1 minute to 9
seconds.
llvm-svn: 303676
Summary:
First, StringMap uses llvm::HashString, which is only good for short
identifiers and really bad for large blobs of binary data like type
records. Moving to `DenseMap<StringRef, TypeIndex>` with some tricks for
memory allocation fixes that.
Unfortunately, that didn't buy very much performance. Profiling showed
that we spend a long time during DenseMap growth rehashing existing
entries. Also, in general, DenseMap is faster when the keys are small.
This change takes that to the logical conclusion by introducing a small
wrapper value type around a pointer to key data. The key data contains a
precomputed hash, the original record data (pointer and size), and the
type index, which is the "value" of our original map.
This reduces the time to produce llvm-as.exe and llvm-as.pdb from ~15s
on my machine to 3.5s, which is about a 4x improvement.
Reviewers: zturner, inglorion, ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33428
llvm-svn: 303665
Previous algotirhm assumed that types and ids are in a single
unified stream. For inputs that come from object files, this
is the case. But if the input is already a PDB, or is the result
of a previous merge, then the types and ids will already have
been split up, in which case we need an algorithm that can
accept operate on independent streams of types and ids that
refer across stream boundaries to each other.
Differential Revision: https://reviews.llvm.org/D33417
llvm-svn: 303577
llvm-symbolizer would fail to symbolize addresses in unlinked object
files when handling .dwo file data because the addresses would not be
relocated in the same way as the ranges in the skeleton CU in the object
file.
Fix that so object files can be symbolized the same as executables.
llvm-svn: 303532
This was originally reverted because it was a breaking a bunch
of bots and the breakage was not surfacing on Windows. After much
head-scratching this was ultimately traced back to a bug in the
lit test runner related to its pipe handling. Now that the bug
in lit is fixed, Windows correctly reports these test failures,
and as such I have finally (hopefully) fixed all of them in this
patch.
llvm-svn: 303446
This is a squash of ~5 reverts of, well, pretty much everything
I did today. Something is seriously broken with lit on Windows
right now, and as a result assertions that fire in tests are
triggering failures. I've been breaking non-Windows bots all
day which has seriously confused me because all my tests have
been passing, and after running lit with -a to view the output
even on successful runs, I find out that the tool is crashing
and yet lit is still reporting it as a success!
At this point I don't even know where to start, so rather than
leave the tree broken for who knows how long, I will get this
back to green, and then once lit is fixed on Windows, hopefully
hopefully fix the remaining set of problems for real.
llvm-svn: 303409
We were using a BumpPtrAllocator to allocate stable storage for
a record, then trying to insert that into a hash table. If a
collision occurred, the bytes were never inserted and the
allocation was unnecessary. At the cost of an extra hash
computation, check first if it exists, and only if it does do
we allocate and insert.
llvm-svn: 303407
Apparently this was always broken, but previously we were more
graceful about it and we would print "unknown udt" if we couldn't
find the type index, whereas now we just segfault because we
assume it's valid. But this exposed a real bug, which is that
we weren't looking in the right place. So fix that, and also
fix this crash at the same time.
llvm-svn: 303397
Merging PDBs is a feature that will be used heavily by
the linker. The functionality already exists but does not
have deep test coverage because it's not easily exposed through
any tools. This patch aims to address that by adding the
ability to merge PDBs via llvm-pdbdump. It takes arbitrarily
many PDBs and outputs a single PDB.
Using this new functionality, a test is added for merging
type records. Future patches will add the ability to merge
symbol records, module information, etc.
llvm-svn: 303389
Right now we have multiple notions of things that represent collections of
types. Most commonly used are TypeDatabase, which is supposed to keep
mappings from TypeIndex to type name when reading a type stream, which
happens when reading PDBs. And also TypeTableBuilder, which is used to
build up a collection of types dynamically which we will later serialize
(i.e. when writing PDBs).
But often you just want to do some operation on a collection of types, and
you may want to do the same operation on any kind of collection. For
example, you might want to merge two TypeTableBuilders or you might want
to merge two type streams that you loaded from various files.
This dichotomy between reading and writing is responsible for a lot of the
existing code duplication and overlapping responsibilities in the existing
CodeView library classes. For example, after building up a
TypeTableBuilder with a bunch of type records, if we want to dump it we
have to re-invent a bunch of extra glue because our dumper takes a
TypeDatabase or a CVTypeArray, which are both incompatible with
TypeTableBuilder.
This patch introduces an abstract base class called TypeCollection which
is shared between the various type collection like things. Wherever we
previously stored a TypeDatabase& in some common class, we now store a
TypeCollection&.
The advantage of this is that all the details of how the collection are
implemented, such as lazy deserialization of partial type streams, is
completely transparent and you can just treat any collection of types the
same regardless of where it came from.
Differential Revision: https://reviews.llvm.org/D33293
llvm-svn: 303388
1) Until now I'd never seen a valid PDB where the DBI stream and
the PDB Stream disagreed on the "Age" field. Because of that,
we had code to assert that they matched. Recently though I was
given a PDB where they disagreed, so this assumption has proven
to be incorrect. Remove this check.
2) We were walking the entire list of hash values for types up front
and then throwing away the values. For large PDBs this was a
significant slow down. Remove this.
With this patch, I can dump the list of all compilands from a
1.5GB PDB file in just a few seconds.
llvm-svn: 303351
We do not need to store relocation width field.
Patch removes relative code, that simplifies implementation.
Differential revision: https://reviews.llvm.org/D33274
llvm-svn: 303335
I revisited Decompressor API (issue with it was triggered during D32865 review)
and found it is probably provides more then we really need.
Issue was about next method's signature:
Error decompress(SmallString<32> &Out);
It is too strict. At first I wanted to change it to decompress(SmallVectorImpl<char> &Out),
but then found it is still not flexible because sticks to SmallVector.
During reviews was suggested to use templating to simplify code. Patch do that.
Differential revision: https://reviews.llvm.org/D33200
llvm-svn: 303331
Summary:
llvm-pdbdump yaml2pdb used to fail with a misleading error
message ("An I/O error occurred on the file system") if no output file
was specified. This change adds an assert to PDBFileBuilder to check
that an output file name is specified, and makes llvm-pdbdump generate
an output file name based on the input file name if no output file
name is explicitly specified.
Reviewers: amccarth, zturner
Reviewed By: zturner
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D33296
llvm-svn: 303299
There is often a lot of boilerplate code required to visit a type
record or type stream. The #1 use case is that you have a sequence
of bytes that represent one or more records, and you want to
deserialize each one, switch on it, and call a callback with the
deserialized record that the user can examine. Currently this
requires at least 6 lines of code:
codeview::TypeVisitorCallbackPipeline Pipeline;
Pipeline.addCallbackToPipeline(Deserializer);
Pipeline.addCallbackToPipeline(MyCallbacks);
codeview::CVTypeVisitor Visitor(Pipeline);
consumeError(Visitor.visitTypeRecord(Record));
With this patch, it becomes one line of code:
consumeError(codeview::visitTypeRecord(Record, MyCallbacks));
This is done by having the deserialization happen internally inside
of the visitTypeRecord function. Since this is occasionally not
desirable, the function provides a 3rd parameter that can be used
to change this behavior.
Hopefully this can significantly reduce the barrier to entry
to using the visitation infrastructure.
Differential Revision: https://reviews.llvm.org/D33245
llvm-svn: 303271
RelocAddrMap was a pair of <width, address>, where width is relocation size (4/8/x, x < 8),
and width field was never used in code.
Relocations proccessing loop had checks for width field. Does not look like DWARF parser
should do that. There is probably no much sense to validate relocations during proccessing
them in parser.
Patch removes relocation's width relative code from DWARFContext.
Differential revision: https://reviews.llvm.org/D33194
llvm-svn: 303251
Recommit of r303159 "[DWARF] - Use DWARFAddressRange struct instead of uint64_t pair for DWARFAddressRangesVector"
All places were shitched to use DWARFAddressRange now.
Suggested during review of D33184.
llvm-svn: 303163
I am working on a speedup of building .gdb_index in LLD and
noticed that relocations that are proccessed in DWARFContextInMemory often uses
the same symbol in a row. This patch introduces caching to reduce the relocations
proccessing time.
For benchmark,
I took debug LLC binary objects configured with -ggnu-pubnames and linked it using LLD.
Link time without --gdb-index is about 4,45s.
Link time with --gdb-index: a) Without patch: 19,16s b) With patch: 15,52s
That means time spent on --gdb-index in this configuration is
19,16s - 4,45s = 14,71s (without patch) vs 15,52s - 4,45s = 11,07s (with patch).
Differential revision: https://reviews.llvm.org/D31136
llvm-svn: 303051
This adds a visitor that is capable of accessing type
records randomly and caching intermediate results that it
learns about during partial linear scans. This yields
amortized O(1) access to a type stream even though type
streams cannot normally be indexed.
Differential Revision: https://reviews.llvm.org/D33009
llvm-svn: 302936
There is no other explanation about why this only started happening
now, even though it crashes on old code (supposedly reachable from
here).
The only common factor between the failing bots is that they use GCC
(4.9 and 5.3) to compile Clang, while the others use Clang 3.8, but the
failure is while building the tests, as an assertion, on Clang.
Commenting it out for now in hope the bots will go back green, but we
should keep looking for the real cause, and update bugzilla.
llvm-svn: 302520
Previously type visitation was done strictly sequentially, and
TypeIndexes were computed by incrementing the TypeIndex of the
last visited record. This works fine for situations like dumping,
but not when you want to visit types in random order. For example,
in a debug session someone might lookup a symbol by name, find that
it has TypeIndex 10,000 and then want to go straight to TypeIndex
10,000.
In order to make this work, the visitation framework needs a mode
where it can plumb TypeIndices through the callback pipeline. This
patch adds such a mode. In doing so, it is necessary to provide
an alternative implementation of TypeDatabase that supports random
access, so that is done as well.
Nothing actually uses these random access capabilities yet, but
this will be done in subsequent patches.
Differential Revision: https://reviews.llvm.org/D32928
llvm-svn: 302454
Most of the time we know exactly how many type records we
have in a list, and we want to use the visitor to deserialize
them into actual records in a database. Previously we were
just using push_back() every time without reserving the space
up front in the vector. This is obviously terrible from a
performance standpoint, and it's not uncommon to have PDB
files with half a million type records, where the performance
degredation was quite noticeable.
llvm-svn: 302302
llvm-dwarfdump currently prints no message if decompression fails
for some reason. I noticed that during work on one of LLD patches
where LLD produced an broken output. It was a bit confusing to see
no output for section dumped and no any error message at all.
Patch adds error message for such cases.
Differential revision: https://reviews.llvm.org/D32865
llvm-svn: 302221
Verifying the hash values as we are currently doing
results in iterating every type record before the user
even tries to access the first one, and the API user
has no control over, or ability to hook into this
process.
As a result, when the user wants to iterate over types
to print them or index them, this results in a second
iteration over the same list of types. When there's
upwards of 1,000,000 type records, this is obviously
quite undesirable.
This patch raises the verification outside of TpiStream
, and llvm-pdbdump hooks a hash verification visitor
into the normal dumping process. So we still verify
the hash records, but we can do it while not requiring
a second iteration over the type stream.
Differential Revision: https://reviews.llvm.org/D32873
llvm-svn: 302206
I tried to run llvm-pdbdump on a very large (~1.5GB) PDB to
try and identify show-stopping performance problems. This
patch addresses the first such problem.
When loading the DBI stream, before anyone has even tried to
access a single record, we build an in memory map of every
source file for every module. In the particular PDB I was
using, this was over 85 million files. Specifically, the
complexity is O(m*n) where m is the number of modules and
n is the average number of source files (including headers)
per module.
The whole reason for doing this was so that we could have
constant time access to any module and any of its source
file lists. However, we can still get O(1) access to the
source file list for a given module with a simple O(m)
precomputation, and access to the list of modules is
already O(1) anyway.
So this patches reduces the O(m*n) up-front precomputation
to an O(m) one, where n is ~6,500 and n*m is about 85 million
in my pathological test case.
Differential Revision: https://reviews.llvm.org/D32870
llvm-svn: 302205
Adrian requested that we break things down to make things clean in the DWARFVerifier. This patch breaks everything down into nice individual functions and cleans up the code quite a bit and prepares us for the next round of verifiers.
Differential Revision: https://reviews.llvm.org/D32812
llvm-svn: 302062
The raw CodeView format references strings by "offsets", but it's
confusing what table the offset refers to. In the case of line
number information, it's an offset into a buffer of records,
and an indirection is required to get another offset into a
different table to find the final string. And in the case of
checksum information, there is no indirection, and the offset
refers directly to the location of the string in another buffer.
This would be less confusing if we always just referred to the
strings by their value, and have the library be smart enough
to correctly resolve the offsets on its own from the right
location.
This patch makes that possible. When either reading or writing,
all the user deals with are strings, and the library does the
appropriate translations behind the scenes.
llvm-svn: 302053
llvm-readobj hand rolls some CodeView parsing code for string
tables, so this patch updates it to re-use some of the newly
introduced parsing code in LLVMDebugInfoCodeView.
Differential Revision: https://reviews.llvm.org/D32772
llvm-svn: 302052
Adrian requested we create a DWARFVerifier.cpp file to contain all of the DWARF verification stuff. This change simply moves the functionality over into DWARFVerifier.h and DWARFVerifier.cpp, renames the DWARFVerifier methods to start with lower case, and switches DWARFContext.cpp over to using the new functionality.
Differential Revision: https://reviews.llvm.org/D32809
llvm-svn: 302044
This was reverted due to a "missing" file, but in reality
what happened was that I renamed a file, and then due to
a merge conflict both the old file and the new file got
added to the repository. This led to an unused cpp file
being in the repo and not referenced by any CMakeLists.txt
but #including a .h file that wasn't in the repo. In an
even more unfortunate coincidence, CMake didn't report the
unused cpp file because it was in a subdirectory of the
folder with the CMakeLists.txt, and not in the same directory
as any CMakeLists.txt.
The presence of the unused file was then breaking certain
tools that determine file lists by globbing rather than
by what's specified in CMakeLists.txt
In any case, the fix is to just remove the unused file from
the patch set.
llvm-svn: 302042
Check to make sure no compile units have the same DW_AT_stmt_list values. Report a verification error if they do.
Differential Revision: https://reviews.llvm.org/D32771
llvm-svn: 302039
The patch is failing to add StringTableStreamBuilder.h, but that isn't
even discovered because the corresponding StringTableStreamBuilder.cpp
isn't added to any CMakeLists.txt file and thus never built. I think
this patch is just incomplete.
llvm-svn: 302002
This was reported by the ASAN bot, and it turned out to be
a fairly fundamental problem with the design of VarStreamArray
and the way it passes context information to the extractor.
The fix was cumbersome, and I'm not entirely pleased with it,
so I plan to revisit this design in the future when I'm not
pressed to get the bots green again. For now, this fixes
the issue by storing the context information by value instead
of by reference, and introduces some impossibly-confusing
template magic to make things "work".
llvm-svn: 301999
Previously we had knowledge of how to serialize and deserialize
a string table inside of DebugInfo/PDB, but the string table
that it serializes contains a piece that is actually considered
CodeView and can appear outside of a PDB. We already have logic
in llvm-readobj and MCCodeView to read and write this format,
so it doesn't make sense to duplicate the logic in DebugInfoPDB
as well.
This patch makes codeview::StringTable (for writing) and
codeview::StringTableRef (for reading), updates DebugInfoPDB
to use these classes for its own writing, and updates llvm-readobj
to additionally use StringTableRef for reading.
It's a bit more difficult to get MCCodeView to use this for
writing, but it's a logical next step.
llvm-svn: 301986
This patch verifies the .debug_line:
- verify all addresses in a line table sequence have ascending addresses
- verify that all line table file indexes are valid
Unit tests added for both cases.
Differential Revision: https://reviews.llvm.org/D32765
llvm-svn: 301984
The directory and file tables now have form-based content descriptors.
Parse these and extract the per-directory/file records based on the
descriptors. For now we support only DW_FORM_string (inline) for the
path names; follow-up work will add support for indirect forms (i.e.,
DW_FORM_strp, strx<N>, and line_strp).
Differential Revision: http://reviews.llvm.org/D32713
llvm-svn: 301978
LTO and other fancy linking previously led to DWARF that contained invalid references. We already validate that CU relative references fall into the CU, and the DW_FORM_ref_addr references fall inside the .debug_info section, but we didn't validate that the references pointed to correct DIE offsets. This new verification will ensure that all references refer to actual DIEs and not an offset in between.
This caught a bug in DWARFUnit::getDIEForOffset() where if you gave it any offset, it would match the DIE that mathes the offset _or_ the next DIE. This has been fixed.
Differential Revision: https://reviews.llvm.org/D32722
llvm-svn: 301971
With the forthcoming codeview::StringTable which a pdb::StringTable
would hold an instance of as one member, this ambiguity becomes
confusing. Rename to PDBStringTable to avoid this.
llvm-svn: 301948
Previously we wrote line information and file checksum
information, but we did not write information about inlinee
lines and functions. This patch adds support for that.
llvm-svn: 301936
lldb-dwarfdump gets a new "--verify" option that will verify a single file's DWARF debug info and will print out any errors that it finds. It will return an non-zero exit status if verification fails, and a zero exit status if verification succeeds. Adding the --quiet option will suppress any output the STDOUT or STDERR.
The first part of the verify does the following:
- verifies that all CU relative references (DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8, DW_FORM_ref_udata) have valid CU offsets
- verifies that all DW_FORM_ref_addr references have valid .debug_info offsets
- verifies that all DW_AT_ranges attributes have valid .debug_ranges offsets
- verifies that all DW_AT_stmt_list attributes have valid .debug_line offsets
- verifies that all DW_FORM_strp attributes have valid .debug_str offsets
Unit tests were added for each of the above cases.
Differential Revision: https://reviews.llvm.org/D32707
llvm-svn: 301844
In preparation for introducing writing capabilities for each of
these classes, I would like to adopt a Foo / FooRef naming
convention, where Foo indicates that the class can manipulate and
serialize Foos, and FooRef indicates that it is an immutable view of
an existing Foo. In other words, Foo is a writer and FooRef is a
reader. This patch names some existing readers to conform to the
FooRef convention, while offering no functional change.
llvm-svn: 301810
There is a lot of duplicate code for printing line info between
YAML and the raw output printer. This introduces a base class
that can be shared between the two, and makes some minor
cleanups in the process.
llvm-svn: 301728
The llvm-readobj parsing code currently exists in our CodeView
library, so we use that to parse instead of re-writing the logic
in the tool.
llvm-svn: 301718
There was a garbage character in output introduced by myself in
r290040 "[DWARF] - Introduce DWARFDebugPubTable class for dumping pub* sections."
llvm-svn: 301631
Previously parsing of these were all grouped together into a
single master class that could parse any type of debug info
fragment.
With writing forthcoming, the complexity of each individual
fragment is enough to warrant them having their own classes so
that reading and writing of each fragment type can be grouped
together, but isolated from the code for reading and writing
other fragment types.
In doing so, I found a place where parsing code was duplicated
for the FileChecksums fragment, across llvm-readobj and the
CodeView library, and one of the implementations had a bug.
Now that the codepaths are merged, the bug is resolved.
Differential Revision: https://reviews.llvm.org/D32547
llvm-svn: 301557
We have a lot of very similarly named classes related to
dealing with module debug info. This patch has NFC, it just
renames some classes to be more descriptive (albeit slightly
more to type). The mapping from old to new class names is as
follows:
Old | New
ModInfo | DbiModuleDescriptor
ModuleSubstream | ModuleDebugFragment
ModStream | ModuleDebugStream
With the corresponding Builder classes renamed accordingly.
Differential Revision: https://reviews.llvm.org/D32506
llvm-svn: 301555
It is useful to output size of ranges when address ranges
section of .gdb_index is dumped.
It helps to compare outputs produced by different linkers,
for example. In that case address ranges can look very different,
when they are the same at fact. Difference comes from different
low address because of different address of .text.
Differential revision: https://reviews.llvm.org/D32492
llvm-svn: 301527
We were already parsing and dumping this to the human readable
format, but not to the YAML format. This does so, in preparation
for reading it in and reconstructing the line information from
YAML.
llvm-svn: 301357
This reworks the way virtual bases are handled, and also the way
padding is detected across multiple levels of aggregates, producing
a much more accurate result.
llvm-svn: 301203
I found this when investigated "Bug 32319 - .gdb_index is broken/incomplete" for LLD.
When we have object file with .debug_ranges section it may be filled with zeroes.
Relocations are exist in file to relocate this zeroes into real values later, but until that
a pair of zeroes is treated as terminator. And DWARF parser thinks there is no ranges at all
when I am trying to collect address ranges for building .gdb_index.
Solution implemented in this patch is to take relocations in account when parsing ranges.
Differential revision: https://reviews.llvm.org/D32228
llvm-svn: 301170
This is splitted from D32228,
currently DWARF parsers code has few places that applied relocations values manually.
These places has similar duplicated code. Patch introduces separate method that can be
used to obtain relocated value. That helps to reduce code and simplifies things.
Differential revision: https://reviews.llvm.org/D32284
llvm-svn: 300956
Summary:
In the current implementation, to find inline stack for an address incurs expensive linear search in 2 places:
* linear search for the top-level DIE
* recursive linear traverse the DIE tree to find the path to the leaf DIE
In this patch, a map is built from address to its corresponding leaf DIE. The inline stack is built by traversing from the leaf DIE up to the root DIE. This speeds up batch symbolization by ~10X without noticible memory overhead.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32177
llvm-svn: 300742
Summary:
In the current implementation, to find inline stack for an address incurs expensive linear search in 2 places:
* linear search for the top-level DIE
* recursive linear traverse the DIE tree to find the path to the leaf DIE
In this patch, a map is built from address to its corresponding leaf DIE. The inline stack is built by traversing from the leaf DIE up to the root DIE. This speeds up batch symbolization by ~10X without noticible memory overhead.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32177
llvm-svn: 300697
In a followup patch I intend to introduce an additional dumping
mode which dumps a graphical representation of a class's layout.
In preparation for this, the text-based layout printer needs to
be split out from the graphical layout printer, and both need
to be able to use the same code for printing the intro and outro
of a class's definition (e.g. base class list, etc).
This patch does so, and in the process introduces a skeleton
definition for the graphical printer, while currently making
the graphical printer just print nothing.
NFC
llvm-svn: 300134
Previously the dumping of class definitions was very primitive,
and it made it hard to do more than the most trivial of output
formats when dumping. As such, we would only dump one line for
each field, and then dump non-layout items like nested types
and enums.
With this patch, we do a complete analysis of the object
hierarchy including aggregate types, bases, virtual bases,
vftable analysis, etc. The only immediately visible effects
of this are that a) we can now dump a line for the vfptr where
before we would treat that as padding, and b) we now don't
treat virtual bases that come at the end of a class as padding
since we have a more detailed analysis of the class's storage
usage.
In subsequent patches, we should be able to use this analysis
to display a complete graphical view of a class's layout including
recursing arbitrarily deep into an object's base class / aggregate
member hierarchy.
llvm-svn: 300133
This change is basically relative to D31136, where I initially wanted to
implement some relocations handling optimization which shows it can give
significant boost. Though even without any caching algorithm looks
code can have some cleanup at first.
Refactoring separates out code for taking symbol address, used in relocations
computation.
Differential revision: https://reviews.llvm.org/D31747
llvm-svn: 300039
Summary:
This lets PDB readers lookup type record data by type index in O(log n)
time. It also enables makes `cvdump -t` work on PDBs produced by LLD.
cvdump will not dump a PDB that doesn't have an index-to-offset table.
The table is sorted by type index, and has an entry every 8KB. Looking
up a type record by index is a binary search of this table, followed by
a scan of at most 8KB.
Reviewers: ruiu, zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31636
llvm-svn: 299958
* Adds support for pointers to arrays, which was missing
* Adds some tests
* Improves consistency of const and volatile qualifiers
* Eliminates non-composable special case code for arrays and function by using
a more general recursive approach
* Has a hack for getting the calling convention into the right spot for
pointer-to-functions
Given the rapid changes happenning in llvm-pdbdump, this may be difficult to
merge.
Differential Revision: https://reviews.llvm.org/D31832
llvm-svn: 299848
1. Added some asserts to make sure concrete symbol types don't
get constructed with RawSymbols that have an incompatible
SymTag enum value.
2. Added new forwarding macros that auto-define an Id/Sym method
pair whenever there is a method that returns a SymIndexId.
Previously we would just provide one method that returned only
the SymIndexId and it was up to the caller to use the Session
object to get a pointer to the symbol. Now we automatically
get both the method that returns the Id, as well as a method
that returns the pointer directly with just one macro.
3. Added some methods for dumping straight to stdout that can
be used from inside the debugger for diagnostics during a
debug session.
4. Added a clone() method and a cast<T>() method to PDBSymbol
that can shorten some usage patterns.
llvm-svn: 299831
Summary:
The TypeTableBuilder provides stable storage for type records. We don't
need to copy all of the bytes into a flat vector before adding it to the
TpiStreamBuilder.
This makes addTypeRecord take an ArrayRef<uint8_t> and a hash code to go
with it, which seems like a simplification.
Reviewers: ruiu, zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31634
llvm-svn: 299406
Summary:
MASM can produce type streams that are not topologically sorted. It can
even produce type streams with circular references, but those are not
common in practice.
Reviewers: inglorion, ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31629
llvm-svn: 299403
This assert is just trying to test that processing each record adds
exactly one entry to the index map. The assert logic was wrong when the
first record in the type stream was a field list.
I've simplified the code by moving the LF_FIELDLIST-specific logic into
the callback for that record type.
llvm-svn: 299035
This should work on all platforms now that r299006 has landed. Tested locally
on Windows and Linux.
This moves exe symbol-specific method implementations out of NativeRawSymbol
into a concrete subclass. Also adds implementations for hasCTypes and
hasPrivateSymbols and a simple test to ensure the native reader can access the
summary information for the executable from the PDB.
Original Differential Revision: https://reviews.llvm.org/D31059
llvm-svn: 299019
Summary: MSVC does this when producing a PDB.
Reviewers: ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31316
llvm-svn: 298717
Summary:
When dumping these records from an object file section, we should use
only one type database. However, when dumping from a PDB, we should use
two: one for the type stream and one for the IPI stream.
Certain type records that normally live in the .debug$T object file
section get moved over to the IPI stream of the PDB file and they get
new indices.
So far, I've noticed that the MSVC linker always moves these records
into IPI:
- LF_FUNC_ID
- LF_MFUNC_ID
- LF_STRING_ID
- LF_SUBSTR_LIST
- LF_BUILDINFO
- LF_UDT_MOD_SRC_LINE
These records have index fields that can point into TPI or IPI. In
particular, LF_SUBSTR_LIST and LF_BUILDINFO point to LF_STRING_ID
records to describe compilation command lines.
I've modified the dumper to have an optional pointer to the item DB, and
to do type name lookup of these fields in that DB. See printItemIndex.
The result is that our pdbdump-headers.test is more faithful to the PDB
contents and the output is less confusing.
Reviewers: ruiu
Subscribers: amccarth, zturner, llvm-commits
Differential Revision: https://reviews.llvm.org/D31309
llvm-svn: 298649
Reverting until I can figure out the root cause.
Revert "Re-land: Make NativeExeSymbol a concrete subclass of NativeRawSymbol [PDB]"
This reverts commit f461a70cc376f0f91c8b4917be79479cc86330a5.
llvm-svn: 298626
The new test should pass on all platforms now that llvm-pdbdump has the
`-color-output` option.
This moves exe symbol-specific method implementations out of NativeRawSymbol
into a concrete subclass. Also adds implementations for hasCTypes and
hasPrivateSymbols and a simple test to ensure the native reader can access
the summary information for the executable from the PDB.
Original Differential Revision: https://reviews.llvm.org/D31059
llvm-svn: 298623
Summary:
This removes the 'remapTypeIndices' method on every TypeRecord class. My
original idea was that this would be the beginning of some kind of
generic entry point that would enumerate all of the TypeIndices inside
of a TypeRecord, so that we could write generic graph algorithms for
them without duplicating the knowledge of which fields are type index
fields everywhere. This never happened, and nothing else uses this
method. I need to change the API to deal with merging into IPI streams,
so let's move it into the file that uses it first.
Reviewers: zturner, ruiu
Reviewed By: zturner, ruiu
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D31267
llvm-svn: 298564
They are structurally the same, but now we need to distinguish them
because one record lives in the IPI stream and the other lives in TPI.
llvm-svn: 298474
This was originally reported in pr32249, uncovered by PTVS-Studio.
There was no code coverage for this path because it was
difficult to construct odd-case PDB files that were not generated
by cl.
Now that we can write construct minimal PDB files from YAML,
it's easy to construct fragments that generate whatever we want.
In this patch I add a test that creates 2 type records. One
with a unique name, and one without. I verify that we can go
from PDB to Yaml with no errors. In a future patch I'd like
to add something like llvm-pdbdump raw -lookup-type that will
just dump one record and nothing else, which should make it
a bit cleaner to find this kind of thing.
llvm-svn: 298017
This moves exe symbol-specific method implementations out of NativeRawSymbol
into a concrete subclass. Also adds implementations for hasCTypes and
hasPrivateSymbols and a simple test to ensure the native reader can access
the summary information for the executable from the PDB.
Differential Revision: https://reviews.llvm.org/D31059
llvm-svn: 298005
This was discovered when running `llvm-pdbdump diff` against
two files, the second of which was generated by running the
first one through pdb2yaml and then yaml2pdb.
The second one was missing some bytes from the PDB Stream, and
tracking this down showed that at the end of the PDB Stream were
some additional bytes that we were ignoring. Looking back
to the reference code, these seem to specify some additional
flags that indicate whether the PDB supports various optional
features.
This patch adds support for reading, writing, and round-tripping
these flags through YAML and the raw dumper, and updates the
tests accordingly.
llvm-svn: 297984
In doing so I discovered that we completely ignore some bytes
of the PDB Stream after we "finish" loading it. These bytes
seem to specify some additional information about what kind
of data is present in the PDB. A subsequent patch will add
code to read in those fields and store their values.
llvm-svn: 297983
Previously we did not have support for writing detailed
module information for each module, as well as the symbol
records. This patch adds support for this, and in doing
so enables the ability to construct minimal PDBs from
just a few lines of YAML. A test is added to illustrate
this functionality.
llvm-svn: 297900
Together, these allow lldb-pdbdump to list all the modules from a PDB using a
native reader (rather than DIA).
Note that I'll probably be specializing NativeRawSymbol in a subsequent patch.
Differential Revision: https://reviews.llvm.org/D30956
llvm-svn: 297883
Previously we could round-trip type records from PDB -> Yaml ->
PDB, but for symbols we could only go from PDB -> Yaml. This
completes the round-tripping for symbols as well.
llvm-svn: 297625
Some late additions to DWARF v5 were not in Dwarf.def; also one form
was redefined. Add the new cases to relevant switches in different
parts of LLVM. Replace DW_FORM_ref_sup with DW_FORM_ref_sup[4,8].
I did not add support for DW_FORM_strx3/addrx3 other that defining the
constants. We don't have any infrastructure to support these.
Differential Revision: http://reviews.llvm.org/D30664
llvm-svn: 297085
After several smaller patches to get most of the core improvements
finished up, this patch is a straight move and header fixup of
the source.
Differential Revision: https://reviews.llvm.org/D30266
llvm-svn: 296810
Requesting DWARF v5 will now get you the new compile-unit and
type-unit headers. llvm-dwarfdump will also recognize them.
Differential Revision: http://reviews.llvm.org/D30206
llvm-svn: 296514