When the floating point constants are whole numbers they have no decimal point so look like integers, but mean something very different in something like an 'and' instruction.
Ideally we would just print a decimal point and a 0, but I couldn't see how to make APFloat::toString do that.
llvm-svn: 345488
These promotions add additional bitcasts to the SelectionDAG that can pessimize computeKnownBits/computeNumSignBits. It also seems to interfere with broadcast formation.
This patch removes the promotion and adds isel patterns instead.
The increased table size is more than I would like, but hopefully we can find some canonicalizations or other tricks to start pruning out patterns going forward.
Differential Revision: https://reviews.llvm.org/D53268
llvm-svn: 345408
Enable enableMultipleCopyHints() on X86.
Original Patch by @jonpa:
While enabling the mischeduler for SystemZ, it was discovered that for some reason a test needed one extra seemingly needless COPY (test/CodeGen/SystemZ/call-03.ll). The handling for that is resulted in this patch, which improves the register coalescing by providing not just one copy hint, but a sorted list of copy hints. On SystemZ, this gives ~12500 less register moves on SPEC, as well as marginally less spilling.
Instead of improving just the SystemZ backend, the improvement has been implemented in common-code (calculateSpillWeightAndHint(). This gives a lot of test failures, but since this should be a general improvement I hope that the involved targets will help and review the test updates.
Differential Revision: https://reviews.llvm.org/D38128
llvm-svn: 342578
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
We can use the same input for both operands to get a free compare with zero.
We already use this trick in a couple places where we explicitly create PTESTM with the same input twice. This generalizes it.
I'm hoping to remove the ISD opcodes and move this to isel patterns like we do for scalar cmp/test.
llvm-svn: 323605
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
Selecting 32-bit element logical ops without a select or broadcast requires matching a bitconvert on the inputs to the and. But that's a weird thing to rely on. It's entirely possible that one of the inputs doesn't have a bitcast and one does.
Since there's no functional difference, just remove the extra patterns and save some isel table size.
Differential Revision: https://reviews.llvm.org/D36854
llvm-svn: 312138
VZEROUPPER should not be issued on Knights Landing (KNL), but on Skylake-avx512 it should be.
Differential Revision: https://reviews.llvm.org/D29874
llvm-svn: 296859
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
These nodes are only emitted for lowering FABS/FNEG/FNABS/FCOPYSIGN. Ideally we just wouldn't create these nodes if SSE2 or higher is available, but it was simple to just convert them in DAG combine.
For SSE2, AVX, and AVX512 with DQI this is no functional change as the execution domain fixing pass ensures the right domain is selected regardless of the ISD opcode.
For AVX-512 without DQI we end up using integer instructions since the floating point versions aren't available. But we were already doing that for any logical operations in code that didn't come from FABS/FNEG/FNABS/FCOPYSIGN so this seems no worse. And we get the benefit of being able to fold broadcasts now.
llvm-svn: 290060
With DQI but without VLX, lower v2i64 and v4i64 MUL operations with v8i64 MUL (vpmullq).
Updated cost table accordingly.
Differential Revision: https://reviews.llvm.org/D26011
llvm-svn: 285304
Previously we weren't creating masked logical operations if bitcasts appeared between the logic operation and the select. The IR optimizers can move bitcasts across logic operations and create these cases. To minimize the number of cases we need to handle, this change promotes all logic ops to an i64 vector type just like when only SSE or AVX is available.
Unfortunately, this also has the consequence of making it difficult to select unmasked VPANDD/VPORD/VPXORD in all the cases it was previously used. This is the cause of most of the test change. This shouldn't result in any functional change though.
llvm-svn: 279929
An identity COPY like this:
%AL = COPY %AL, %EAX<imp-def>
has no semantic effect, but encodes liveness information: Further users
of %EAX only depend on this instruction even though it does not define
the full register.
Replace the COPY with a KILL instruction in those cases to maintain this
liveness information. (This reverts a small part of r238588 but this
time adds a comment explaining why a KILL instruction is useful).
llvm-svn: 274952
FP logic instructions are supported in DQ extension on AVX-512 target.
I use integer operations instead.
Added tests.
I also enabled FABS in this patch in order to check ANDPS.
The operations are FOR, FXOR, FAND, FANDN.
The instructions, that supported for 512-bit vector under DQ are:
VORPS/PD, VXORPS/PD, VANDPS/PD, FANDNPS/PD.
Differential Revision: http://reviews.llvm.org/D15110
llvm-svn: 254913
KNL does not have VXORPS, VORPS for 512-bit values.
I use integer VPXOR, VPOR that actually do the same.
X86ISD::FXOR/FOR are generated as a result of FSUB combining.
Differential Revision: http://reviews.llvm.org/D12753
llvm-svn: 247523
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
Added RegOp2MemOpTable4 to transform 4th operand from register to memory in merge-masked versions of instructions.
Added lowering tests.
llvm-svn: 224516
Ffter commit at rev219046 512-bit broadcasts lowering become non-optimal. Most of tests on broadcasting and embedded broadcasting were changed and they doesn’t produce efficient code.
Example below is from commit changes (it’s the first test from test/CodeGen/X86/avx512-vbroadcast.ll):
define <16 x i32> @_inreg16xi32(i32 %a) {
; CHECK-LABEL: _inreg16xi32:
; CHECK: ## BB#0:
-; CHECK-NEXT: vpbroadcastd %edi, %zmm0
+; CHECK-NEXT: vmovd %edi, %xmm0
+; CHECK-NEXT: vpbroadcastd %xmm0, %ymm0
+; CHECK-NEXT: vinserti64x4 $1, %ymm0, %zmm0, %zmm0
; CHECK-NEXT: retq
%b = insertelement <16 x i32> undef, i32 %a, i32 0
%c = shufflevector <16 x i32> %b, <16 x i32> undef, <16 x i32> zeroinitializer
ret <16 x i32> %c
}
Here, 256-bit broadcast was generated instead of 512-bit one.
In this patch
1) I added vector-shuffle lowering through broadcasts
2) Removed asserts and branches likes because this is incorrect
- assert(Subtarget->hasDQI() && "We can only lower v8i64 with AVX-512-DQI");
3) Fixed lowering tests
llvm-svn: 220774
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.
Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.
When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.
It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.
There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).
Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]
I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.
llvm-svn: 219046
baseline for updates from the new vector shuffle lowering.
I've inspected the results here, and I couldn't find any register
allocation decisions where there should be any realistic way to register
allocate things differently. The closest was the imul test case. If you
see something here you'd like register number variables on, just shout
and I'll add them.
llvm-svn: 218935
need to be updated for the new vector shuffle lowering.
After talking to Adam Nemet, Tim Northover, etc., it seems that testing
MC encodings in the same suite as the basic codegen isn't the right
approach. Instead, we're going to want dedicated MC tests for the
encodings. These encodings are starting to get in my way so I wanted to
cut them out early. The total set of instructions that should have
encoding tests added is:
vpaddd
vsqrtss
vsqrtsd
vmovlhps
vmovhlps
valignq
vbroadcastss
Not too many parts of these tests were even using this. =]
llvm-svn: 218932
I moved a test from avx512-vbroadcast-crash.ll to avx512-vbroadcast.ll
I defined HasAVX512 predicate as AssemblerPredicate. It means that you should invoke llvm-mc with "-mcpu=knl" to get encoding for AVX-512 instructions. I need this to let AsmMatcher to set different encoding for AVX and AVX-512 instructions that have the same mnemonic and operands (all scalar instructions).
llvm-svn: 197041