The MIPS MSA ASE provides instructions to convert to and from half precision
floating point. This patch teaches the MIPS backend to treat f16 as a legal
type and how to promote such values to f32 for the usual set of operations.
As a result of this, the fexup[lr].w intrinsics no longer crash LLVM during
type legalization.
Reviewers: zoran.jovanvoic, vkalintiris
Differential Revision: https://reviews.llvm.org/D26398
llvm-svn: 287349
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
r221056 "[mips] Move F128 argument handling into MipsCCState as we did for returns. NFC."
r221058 "[mips] Fix unused variable warning introduced in r221056"
r221059 "[mips] Move all ByVal handling into CCState and tablegen-erated code. NFC."
r221061 "Renamed CCState members that appear to misspell 'Processed' as 'Proceed'. NFC."
It cuased an undefined behavior in LLVM :: CodeGen/Mips/return-vector.ll.
llvm-svn: 221081
Summary:
CCState already contains a byval implementation that is very similar to the
Mips custom code. This patch merges the custom code into the existing
common code and tablegen-erated code.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: rnk, llvm-commits
Differential Revision: http://reviews.llvm.org/D5977
llvm-svn: 221059
doesn't generate lazy binding stub for a function whose address is taken in
the program.
Differential Revision: http://reviews.llvm.org/D5067
llvm-svn: 218744
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
Rename to allowsMisalignedMemoryAccess.
On R600, 8 and 16 byte accesses are mostly OK with 4-byte alignment,
and don't need to be split into multiple accesses. Vector loads with
an alignment of the element type are not uncommon in OpenCL code.
llvm-svn: 214055
Summary:
This isn't supported directly so we rotate the vector by the desired number of
elements, insert to element zero, then rotate back.
The i64 case generates rather poor code on MIPS32. There is an obvious
optimisation to be made in future (do both insert.w's inside a shared
rotate/unrotate sequence) but for now it's sufficient to select valid code
instead of aborting.
Depends on D3536
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://reviews.llvm.org/D3537
llvm-svn: 207640
For v4f32 and v2f64, EXTRACT_VECTOR_ELT is matched by a pseudo-insn which may
be expanded to subregister copies and/or instructions as appropriate.
llvm-svn: 191514
Changes to MIPS SelectionDAG:
* Added nodes VEXTRACT_[SZ]EXT_ELT to represent extract and extend in a single
operation and implemented the DAG combines necessary to fold sign/zero
extends into the extract.
llvm-svn: 191199
Note: There's a later patch on my branch that re-implements this to select
build_vector without the custom SelectionDAG nodes. The future patch avoids
the constant-folding problems stemming from the custom node (i.e. it doesn't
need to re-implement all the DAG combines related to BUILD_VECTOR).
Changes to MIPS specific SelectionDAG nodes:
* Added VSPLAT
This is a special case of BUILD_VECTOR that covers the case the
BUILD_VECTOR is a splat operation.
* Added VSPLATD
This is a special case of VSPLAT that handles the cases when v2i64 is legal
llvm-svn: 191191
precision loads and stores as well as reg+imm double precision loads and stores.
Previously, expansion of loads and stores was done after register allocation,
but now it takes place during legalization. As a result, users will see double
precision stores and loads being emitted to spill and restore 64-bit FP registers.
llvm-svn: 190235
These intrinsics are legalized to V(ALL|ANY)_(NON)?ZERO nodes,
are matched as SN?Z_[BHWDV]_PSEUDO pseudo's, and emitted as
a branch/mov sequence to evaluate to 0 or 1.
Note: The resulting code is sub-optimal since it doesnt seem to be possible
to feed the result of an intrinsic directly into a brcond. At the moment
it uses (SETCC (VALL_ZERO $ws), 0, SETEQ) and similar which unnecessarily
evaluates the boolean twice.
llvm-svn: 189478
derived class MipsSETargetLowering.
We shouldn't be generating madd/msub nodes if target is Mips16, since Mips16
doesn't have support for multipy-add/sub instructions.
llvm-svn: 178404
The new instructions have explicit register output operands and use table-gen
patterns instead of C++ code to do instruction selection.
Mips16's instructions are unaffected by this change.
llvm-svn: 178403