Summary:
If the first parameter of the function is the ImplicitParamDecl, codegen
automatically marks it as an implicit argument with `this` or `self`
pointer. Added internal kind of the ImplicitParamDecl to separate
'this', 'self', 'vtt' and other implicit parameters from other kind of
parameters.
Reviewers: rjmccall, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33735
llvm-svn: 305075
`GenerateVarArgsThunk` in `CGVTables` clones a function before the frontend
is done emitting the compilation unit. Because of the way that DIBuilder
works, this means that the attached subprogram had incomplete (temporary)
metadata. Cloning such metadata is semantically disallowed, but happened
to work anyway due to bugs in the cloning logic. rL304226 attempted to fix
up that logic, but in the process exposed the incorrect API use here and
had to be reverted. To be able to fix this, I added a new method to
DIBuilder in rL304467, to allow finalizing a subprogram independently
of the entire compilation unit. Use that here, in preparation of re-applying
rL304226.
Reviewers: aprantl, dblaikie
Differential Revision: https://reviews.llvm.org/D33705
llvm-svn: 304470
The functions creating LValues propagated information about alignment
source. Extend the propagated data to also include information about
possible unrestricted aliasing. A new class LValueBaseInfo will
contain both AlignmentSource and MayAlias info.
This patch should not introduce any functional changes.
Differential Revision: https://reviews.llvm.org/D33284
llvm-svn: 303358
This patch teaches ubsan to insert an alignment check for the 'this'
pointer at the start of each method/lambda. This allows clang to emit
significantly fewer alignment checks overall, because if 'this' is
aligned, so are its fields.
This is essentially the same thing r295515 does, but for the alignment
check instead of the null check. One difference is that we keep the
alignment checks on member expressions where the base is a DeclRefExpr.
There's an opportunity to diagnose unaligned accesses in this situation
(as pointed out by Eli, see PR32630).
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
Along with the patch from D30285, this roughly halves the amount of
alignment checks we emit when compiling X86FastISel.cpp. Here are the
numbers from patched/unpatched clangs based on r298160.
------------------------------------------
| Setup | # of alignment checks |
------------------------------------------
| unpatched, -O0 | 24326 |
| patched, -O0 | 12717 | (-47.7%)
------------------------------------------
Differential Revision: https://reviews.llvm.org/D30283
llvm-svn: 300370
Summary:
"kernel_arg_type_qual" metadata should contain const/volatile/restrict
tags only for pointer types to match the corresponding requirement of
the OpenCL specification.
OpenCL 2.0 spec 5.9.3 Kernel Object Queries:
CL_KERNEL_ARG_TYPE_VOLATILE is returned if the argument is a pointer
and the referenced type is declared with the volatile qualifier.
[...]
Similarly, CL_KERNEL_ARG_TYPE_CONST is returned if the argument is a
pointer and the referenced type is declared with the restrict or const
qualifier.
[...]
CL_KERNEL_ARG_TYPE_RESTRICT will be returned if the pointer type is
marked restrict.
Reviewers: Anastasia, cfe-commits
Reviewed By: Anastasia
Subscribers: bader, yaxunl
Differential Revision: https://reviews.llvm.org/D31321
llvm-svn: 299192
Since r299174 use after scope checking is on by default. Even though
msan doesn't check for use after scope it gets confused by the lifetime
markers emitted for it, making unit tests fail. This is covered by
ninja check-msan.
llvm-svn: 299191
Summary:
The -fxray-always-instrument= and -fxray-never-instrument= flags take
filenames that are used to imbue the XRay instrumentation attributes
using a whitelist mechanism (similar to the sanitizer special cases
list). We use the same syntax and semantics as the sanitizer blacklists
files in the implementation.
As implemented, we respect the attributes that are already defined in
the source file (i.e. those that have the
[[clang::xray_{always,never}_instrument]] attributes) before applying
the always/never instrument lists.
Reviewers: rsmith, chandlerc
Subscribers: jfb, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D30388
llvm-svn: 299041
Teach UBSan to detect when a value with the _Nonnull type annotation
assumes a null value. Call expressions, initializers, assignments, and
return statements are all checked.
Because _Nonnull does not affect IRGen, the new checks are disabled by
default. The new driver flags are:
-fsanitize=nullability-arg (_Nonnull violation in call)
-fsanitize=nullability-assign (_Nonnull violation in assignment)
-fsanitize=nullability-return (_Nonnull violation in return stmt)
-fsanitize=nullability (all of the above)
This patch builds on top of UBSan's existing support for detecting
violations of the nonnull attributes ('nonnull' and 'returns_nonnull'),
and relies on the compiler-rt support for those checks. Eventually we
will need to update the diagnostic messages in compiler-rt (there are
FIXME's for this, which will be addressed in a follow-up).
One point of note is that the nullability-return check is only allowed
to kick in if all arguments to the function satisfy their nullability
preconditions. This makes it necessary to emit some null checks in the
function body itself.
Testing: check-clang and check-ubsan. I also built some Apple ObjC
frameworks with an asserts-enabled compiler, and verified that we get
valid reports.
Differential Revision: https://reviews.llvm.org/D30762
llvm-svn: 297700
This patch honors the unaligned type qualifier (currently available through he
keyword __unaligned and -fms-extensions) in CodeGen. In the current form the
patch affects declarations and expressions. It does not affect fields of
classes.
Differential Revision: https://reviews.llvm.org/D30166
llvm-svn: 297276
Summary:
Functions with the "xray_log_args" attribute will tell LLVM to emit a special
XRay sled for compiler-rt to copy any call arguments to your logging handler.
Reviewers: dberris
Reviewed By: dberris
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D29704
llvm-svn: 296999
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
I also compiled X86FastISel.cpp with -fsanitize=null using
patched/unpatched clangs based on r293572. Here are the number of null
checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Changes since the initial commit:
- Don't introduce any unintentional object-size or alignment checks.
- Don't rely on IRGen of C labels in the test.
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295515
This reverts commit r295401. It breaks the ubsan self-host. It inserts
object size checks once per C++ method which fire when the structure is
empty.
llvm-svn: 295494
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang and check-ubsan. I also compiled X86FastISel.cpp
with -fsanitize=null using patched/unpatched clangs based on r293572.
Here are the number of null checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Changes since the initial commit: don't rely on IRGen of C labels in the
test.
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295401
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang and check-ubsan. I also compiled X86FastISel.cpp
with -fsanitize=null using patched/unpatched clangs based on r293572.
Here are the number of null checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295391
Sometimes the MS ABI needs to emit thunks for declarations that don't
have bodies. Destructor thunks make calls to inlinable functions, so
they need line info or LLVM will complain.
Fixes PR31893
llvm-svn: 294465
This change adds a new type node, DeducedTemplateSpecializationType, to
represent a type template name that has been used as a type. This is modeled
around AutoType, and shares a common base class for representing a deduced
placeholder type.
We allow deduced class template types in a few more places than the standard
does: in conditions and for-range-declarators, and in new-type-ids. This is
consistent with GCC and with discussion on the core reflector. This patch
does not yet support deduced class template types being named in typename
specifiers.
llvm-svn: 293207
with SEH and openmp
In some cituations (during codegen for Windows SEH constructs)
CodeGenFunction instance may have CurFn equal to nullptr. OpenMP related
code does not expect such situation during cleanup.
llvm-svn: 292590
There is a synchronization point between the reference count of a block dropping to zero and it's destruction, which TSan does not observe. Do not report errors in the compiler-emitted block destroy method and everything called from it.
This is similar to https://reviews.llvm.org/D25857
Differential Revision: https://reviews.llvm.org/D28387
llvm-svn: 291868
in non-void functions that fall off at the end without returning a value when
compiling C++.
Clang uses the new compiler flag to determine when it should treat control flow
paths that fall off the end of a non-void function as unreachable. If
-fno-strict-return is on, the code generator emits the ureachable and trap
IR only when the function returns either a record type with a non-trivial
destructor or another non-trivially copyable type.
The primary goal of this flag is to avoid treating falling off the end of a
non-void function as undefined behaviour. The burden of undefined behaviour
is placed on the caller instead: if the caller ignores the returned value then
the undefined behaviour is avoided. This kind of behaviour is useful in
several cases, e.g. when compiling C code in C++ mode.
rdar://13102603
Differential Revision: https://reviews.llvm.org/D27163
llvm-svn: 290960
-fno-inline-functions, -O0, and optnone.
These were really, really tangled together:
- We used the noinline LLVM attribute for -fno-inline
- But not for -fno-inline-functions (breaking LTO)
- But we did use it for -finline-hint-functions (yay, LTO is happy!)
- But we didn't for -O0 (LTO is sad yet again...)
- We had weird structuring of CodeGenOpts with both an inlining
enumeration and a boolean. They interacted in weird ways and
needlessly.
- A *lot* of set smashing went on with setting these, and then got worse
when we considered optnone and other inlining-effecting attributes.
- A bunch of inline affecting attributes were managed in a completely
different place from -fno-inline.
- Even with -fno-inline we failed to put the LLVM noinline attribute
onto many generated function definitions because they didn't show up
as AST-level functions.
- If you passed -O0 but -finline-functions we would run the normal
inliner pass in LLVM despite it being in the O0 pipeline, which really
doesn't make much sense.
- Lastly, we used things like '-fno-inline' to manipulate the pass
pipeline which forced the pass pipeline to be much more
parameterizable than it really needs to be. Instead we can *just* use
the optimization level to select a pipeline and control the rest via
attributes.
Sadly, this causes a bunch of churn in tests because we don't run the
optimizer in the tests and check the contents of attribute sets. It
would be awesome if attribute sets were a bit more FileCheck friendly,
but oh well.
I think this is a significant improvement and should remove the semantic
need to change what inliner pass we run in order to comply with the
requested inlining semantics by relying completely on attributes. It
also cleans up tho optnone and related handling a bit.
One unfortunate aspect of this is that for generating alwaysinline
routines like those in OpenMP we end up removing noinline and then
adding alwaysinline. I tried a bunch of other approaches, but because we
recompute function attributes from scratch and don't have a declaration
here I couldn't find anything substantially cleaner than this.
Differential Revision: https://reviews.llvm.org/D28053
llvm-svn: 290398
This adds a way for us to version any UBSan handler by itself.
The patch overrides D21289 for a better implementation (we're able to
rev up a single handler).
After this, then we can land a slight modification of D19667+D19668.
We probably don't want to keep all the versions in compiler-rt (maybe we
want to deprecate on one release and remove the old handler on the next
one?), but with this patch we will loudly fail to compile when mixing
incompatible handler calls, instead of silently compiling and then
providing bad error messages.
Reviewers: kcc, samsonov, rsmith, vsk
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D21695
llvm-svn: 289444
It doesn't make sense to use the target's address space ids in this context as
this is metadata that should be referring to the "logical" OpenCL address spaces.
For flat AS machines like all "CPUs" in general, the logical AS info gets lost as
there's only one address space (0).
This commit changes the logic such that we always use the SPIR address space
ids for the argument metadata. It thus allows implementing the clGetKernelArgInfo()
and the other detection needs.
https://reviews.llvm.org/D26157
llvm-svn: 286819
This introduces a function annotation that disables TSan checking for the
function at run time. The benefit over attribute((no_sanitize("thread")))
is that the accesses within the callees will also be suppressed.
The motivation for this attribute is a guarantee given by the objective C
language that the calls to the reference count decrement and object
deallocation will be synchronized. To model this properly, we would need to
intercept all ref count decrement calls (which are very common in ObjC due
to use of ARC) and also every single message send. Instead, we propose to
just ignore all accesses made from within dealloc at run time. The main
downside is that this still does not introduce any synchronization, which
means we might still report false positives if the code that relies on this
synchronization is not executed from within dealloc. However, we have not
seen this in practice so far and think these cases will be very rare.
(This problem is similar in nature to https://reviews.llvm.org/D21609;
unfortunately, the same solution does not apply here.)
Differential Revision: https://reviews.llvm.org/D25857
llvm-svn: 286672
can be used to improve the locations when generating remarks for loops.
Depends on the companion LLVM change r286227.
Patch by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D25764
llvm-svn: 286456
Summary:
Current generation of lifetime intrinsics does not handle cases like:
```
{
char x;
l1:
bar(&x, 1);
}
goto l1;
```
We will get code like this:
```
%x = alloca i8, align 1
call void @llvm.lifetime.start(i64 1, i8* nonnull %x)
br label %l1
l1:
%call = call i32 @bar(i8* nonnull %x, i32 1)
call void @llvm.lifetime.end(i64 1, i8* nonnull %x)
br label %l1
```
So the second time bar was called for x which is marked as dead.
Lifetime markers here are misleading so it's better to remove them at all.
This type of bypasses are rare, e.g. code detects just 8 functions building
clang (2329 targets).
PR28267
Reviewers: eugenis
Subscribers: beanz, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D24693
llvm-svn: 285176
Summary: D24693 will need access to it from other places
Reviewers: eugenis
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D24695
llvm-svn: 285158
* recurse through intermediate LabelStmts and AttributedStmts when checking
whether a statement inside a switch declares a variable
* if the end of a compound statement is reachable from the chosen case label,
and the compound statement contains a variable declaration, it's not valid
to just emit the contents of the compound statement -- we must emit the
statement itself or we lose the scope (and thus end lifetimes at the wrong
point)
llvm-svn: 281797
We also need to add ObjCTypeParamTypeLoc. ObjCTypeParamType supports the
representation of "T <protocol>" where T is a type parameter. Before this,
we use TypedefType to represent the type parameter for ObjC.
ObjCTypeParamType has "ObjCTypeParamDecl *OTPDecl" and it extends from
ObjCProtocolQualifiers. It is a non-canonical type and is canonicalized
to the underlying type with the protocol qualifiers.
rdar://24619481
rdar://25060179
Differential Revision: http://reviews.llvm.org/D23079
llvm-svn: 281355
Summary:
Remove access qualifiers on images in arg info metadata:
* kernel_arg_type
* kernel_arg_base_type
Image access qualifiers are inseparable from type in clang implementation,
but OpenCL spec provides a special query to get access qualifier
via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER.
Besides that OpenCL conformance test_api get_kernel_arg_info expects
image types without access qualifier.
Patch by Evgeniy Tyurin.
Reviewers: bader, yaxunl, Anastasia
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D23915
llvm-svn: 280699
Since some profiling tools, such as gprof, ftrace, and uftrace, use
-pg option to generate a mcount function call at the entry of each
function. Function invocation can be detected by this hook function.
But mcount insertion is done before function inlining phase in clang,
sometime a function that already has a mcount call can be inlined in the
middle of another function.
This patch adds an attribute "counting-function" to each function
rather than emitting the mcount call directly in frontend so that this
attribute can be processed in backend. Then the mcount calls can be
properly inserted in backend after all the other optimizations are
completed.
Link: https://llvm.org/bugs/show_bug.cgi?id=28660
Reviewers: hans, rjmccall, hfinkel, rengolin, compnerd
Subscribers: shenhan, cfe-commits
Differential Revision: https://reviews.llvm.org/D22666
llvm-svn: 280355
-fxray-instrument: enables XRay annotation of IR
-fxray-instruction-threshold: configures the threshold for function size (looking at IR instructions), and allow LLVM to decide whether to add the nop sleds later on in the process.
Also implements the related xray_always_instrument and xray_never_instrument function attributes.
Patch by Dean Michael Berris.
llvm-svn: 275330
Improved test with user define structure pipe type case.
Reviewers: Anastasia, pxli168
Subscribers: yaxunl, cfe-commits
Differential revision: http://reviews.llvm.org/D21744
llvm-svn: 275259
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
Add support for /Ob1 (and equivalent -finline-hint-functions), which enable
inlining only for functions marked inline, either explicitly (via inline
keyword, for example), or implicitly (function definition in class body,
for example).
This works by enabling inlining pass, and adding noinline attribute to
every function not marked inline.
Patch by Rudy Pons <rudy.pons@ilod.org>!
Differential Revision: http://reviews.llvm.org/D20647
llvm-svn: 273440
This patch uses function metadata to represent reqd_work_group_size, work_group_size_hint and vector_type_hint kernel attributes and kernel argument info.
Differential Revision: http://reviews.llvm.org/D20979
llvm-svn: 273425
Summary:
This should have been a very simple change, but it was greatly
complicated by the construction of new Decls during IR generation.
In particular, we reconstruct the AST function type in order to get the
implicit 'this' parameter into C++ method types.
We also have to worry about FunctionDecls whose types are not
FunctionTypes because CGBlocks.cpp constructs some dummy FunctionDecls
with 'void' type.
Depends on D21114
Reviewers: aprantl, dblaikie
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D21141
llvm-svn: 272198
Revert the two changes to thread CodeGenOptions into the TargetInfo allocation
and to fix the layering violation by moving CodeGenOptions into Basic.
Code Generation is arguably not particularly "basic". This addresses Richard's
post-commit review comments. This change purely does the mechanical revert and
will be followed up with an alternate approach to thread the desired information
into TargetInfo.
llvm-svn: 265806
This is a mechanical move of CodeGenOptions from libFrontend to libBasic. This
fixes the layering violation introduced earlier by threading CodeGenOptions into
TargetInfo. It should also fix the modules based self-hosting builds. NFC.
llvm-svn: 265702