The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
It's really almost going to be misleading, see the example in
https://bugs.llvm.org/show_bug.cgi?id=45820
Maybe at some point we can do something fancier, but at least
this will fix a bug where we step on dead code while debugging.
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
This is relanding of rGbb308b020522420413c7d3f2989a88f2fc423c56 after
speculatively fixing buildbot lit test failure which was seen on two
bots (I cannot reproduce the lit test failure locally either).
[RS4GC] Fix algorithm to avoid setting vector BDV for scalar derived
pointer
Summary:
This is a more general fix to 59029b9eef (D75704).
This patch does the following:
updates isKnownBaseValue to account for base pointer and
derived pointer having differing types.
This inturn allows us to populate the
lattice (States) for such derived pointers.
It also updates all states where the base and derived pointers have
differing types (vector versus scalar) and conservatively marks these
states as conflictcs.
Note that in 59029b9eef, we were just fixing existing lattice values
and that too, only for uses of extractelement.
Reviewers: reames, skatkov, dantrushin
Reviewed By: skatkov
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D76305
Summary:
This is a more general fix to 59029b9eef (D75704).
This patch does the following:
1. updates isKnownBaseValue to account for base pointer and
derived pointer having differing types.
2. This inturn allows us to populate the
lattice (States) for such derived pointers.
3. It also updates all states where the base and derived pointers have
differing types (vector versus scalar) and conservatively marks these
states as conflictcs.
Note that in 59029b9eef, we were just fixing existing lattice values
and that too, only for uses of extractelement.
Reviewers: reames, skatkov, dantrushin
Reviewed By: skatkov
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76305
Expands on the enablement of the shouldSinkOperands() TLI hook in:
D79718
The last codegen/IR test diff shows what I suspected could happen - we were
sinking all splat shift operands into a loop. But that's not what we want in
general; we only want to sink the *shift amount* operand if it is a splat.
Differential Revision: https://reviews.llvm.org/D79827
This patch introduces an improvement in the Alignment of the loads
generated in createReplacementValues() by querying AAAlign attribute for
the best Alignment for the base.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D76550
Summary:
This change introduces InliningAdvisor (and related APIs), the interface
that abstracts decision making away from the inlining pass. We will use
this interface to delegate decision making to a trained ML model,
subsequently (see referenced RFC).
RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html
Reviewers: davidxl, eraman, dblaikie
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79042
Summary:
Update check to include the check for unreachable.
Basic blocks ending in unreachable are special cased, as these blocks may be already unswitched. Before this patch this check is only done for the default destination.
The condition for the exit cases and the default case must be the same, because we should never leave edges from the switch instruction to a basic block that we are unswitching. In PR45355 we still have a remaining edge (that we're attempting to remove from the DT) because its the default edge to an unreachable-terminated block where we unswitch a case edge to that block.
Resolves PR45355.
Reviewers: chandlerc
Subscribers: hiraditya, uabelho, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78279
This patch adds a new TTI hook to allow targets to tell LSR that
a chain including some instruction is already profitable and
should not be optimized. This patch also adds an implementation
of this TTI hook for ARM so LSR doesn't optimize chains that include
the VCTP intrinsic.
Differential Revision: https://reviews.llvm.org/D79418
This was reverted because of a miscompilation. At closer inspection, the
problem was actually visible in a changed llvm regression test too. This
one-line follow up fix/recommit will splat the IV, which is what we are trying
to avoid if unnecessary in general, if tail-folding is requested even if all
users are scalar instructions after vectorisation. Because with tail-folding,
the splat IV will be used by the predicate of the masked loads/stores
instructions. The previous version omitted this, which caused the
miscompilation. The original commit message was:
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
This is a reimplementation of the `orderNodes` function, as the old
implementation didn't take into account all cases.
Fix PR41509
Differential Revision: https://reviews.llvm.org/D79037
Fix the assumption that all bitcasts of the same type sizes are free.
We now only assume that bitcasts between ints and ptrs of the same
size are free. This allows TTImpl to just call the concrete
implementation of getCastInstrCost.
Differential Revision: https://reviews.llvm.org/D78918
Fixes PR41696
The loop-reroll pass generates an invalid IR (or its assertion
fails in debug build) if values of the base instruction and
other root instructions (terms used in the loop-reroll pass)
are used outside the loop block. See IRs written in PR41696
as examples.
The current implementation of the loop-reroll pass can reroll
only loops that don't have values that are used outside the
loop, except reduced values (the last values of reduction chains).
This is described in the comment of the `LoopReroll::reroll`
function.
https://github.com/llvm/llvm-project/blob/llvmorg-10.0.0/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp#L1600
This is checked in the `LoopReroll::DAGRootTracker::validate`
function.
https://github.com/llvm/llvm-project/blob/llvmorg-10.0.0/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp#L1393
However, the base instruction and other root instructions skip
this check in the validation loop.
https://github.com/llvm/llvm-project/blob/llvmorg-10.0.0/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp#L1229
Moving the check in front of the skip is the logically simplest
fix. However, inserting the check in an earlier stage is better
in terms of compilation time of unrerollable loops. This fix
inserts the check for the base instruction into the function
to validate possible base/root instructions. Check for other
root instructions is unnecessary because they don't match any
base instructions if they have uses outside the loop.
Differential Revision: https://reviews.llvm.org/D79549
For AAReturnedValues we treated new and existing information differently
in the updateImpl. Only the latter was properly analyzed and
categorized. The former was thought to be analyzed in the subsequent
update. Since the Attributor does not support "self-updates" we need to
make sure the state is "stable" after each updateImpl invocation. That
is, if the surrounding information does not change, the state is valid.
Now we make sure all return values have been handled and properly
categorized each iteration. We might not update again if we have not
requested a non-fix attribute so we cannot "wait" for the next update to
analyze a new return value.
Bug reported by @sdmitriev.
Summary:
This fixes PR45885 by fixing isGuaranteedNotToBeUndefOrPoison so it does not look into dominating
branch conditions of V when V is an instruction in an unreachable block.
Reviewers: spatel, nikic, lebedev.ri
Reviewed By: nikic
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79790
We want to add a way to avoid merging identical calls so as to keep the
separate debug-information for those calls. There is also an asan
usecase where having this attribute would be beneficial to avoid
alternative work-arounds.
Here is the link to the feature request:
https://bugs.llvm.org/show_bug.cgi?id=42783.
`nomerge` is different from `noline`. `noinline` prevents function from
inlining at callsites, but `nomerge` prevents multiple identical calls
from being merged into one.
This patch adds `nomerge` to disable the optimization in IR level. A
followup patch will be needed to let backend understands `nomerge` and
avoid tail merge at backend.
Reviewed By: asbirlea, rnk
Differential Revision: https://reviews.llvm.org/D78659
SDAG suffers when it can't see that a funnel operand is a splat value
(due to single-basic-block visibility), so invert the normal loop
hoisting rules to move a splat op closer to its use.
This would be part 1 of an enhancement similar to D63233.
This is needed to re-fix PR37426:
https://bugs.llvm.org/show_bug.cgi?id=37426
...because we got better at canonicalizing IR to funnel shift intrinsics.
The existing CGP code for shift opcodes is likely overstepping what it was
intended to do, so that will be fixed in a follow-up.
Differential Revision: https://reviews.llvm.org/D79718
GNU ld's internal linker script uses (https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=add44f8d5c5c05e08b11e033127a744d61c26aee)
.text :
{
*(.text.unlikely .text.*_unlikely .text.unlikely.*)
*(.text.exit .text.exit.*)
*(.text.startup .text.startup.*)
*(.text.hot .text.hot.*)
*(SORT(.text.sorted.*))
*(.text .stub .text.* .gnu.linkonce.t.*)
/* .gnu.warning sections are handled specially by elf.em. */
*(.gnu.warning)
}
Because `*(.text.exit .text.exit.*)` is ordered before `*(.text .text.*)`, in a -ffunction-sections build, the C library function `exit` will be placed before other functions.
gold's `-z keep-text-section-prefix` has the same problem.
In lld, `-z keep-text-section-prefix` recognizes `.text.{exit,hot,startup,unlikely,unknown}.*`, but not `.text.{exit,hot,startup,unlikely,unknown}`, to avoid the strange placement problem.
In -fno-function-sections or -fno-unique-section-names mode, a function whose `function_section_prefix` is set to `.exit"`
will go to the output section `.text` instead of `.text.exit` when linked by lld.
To address the problem, append a dot to become `.text.exit.`
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D79600
gcov 4.8 (r189778) moved the exit block from the last to the second.
The .gcda format is compatible with 4.7 but
* decoding libgcov 4.7 produced .gcda with gcov [4.7,8) can mistake the
exit block, emit bogus `%s:'%s' has arcs from exit block\n` warnings,
and print wrong `" returned %s` for branch statistics (-b).
* decoding libgcov 4.8 produced .gcda with gcov 4.7 has similar issues.
Also, rename "return block" to "exit block" because the latter is the
appropriate term.
- Specifically check for sext/zext users which have 'long' form NEON
instructions.
- Add more entries to the table for sext/zexts so that we can report
more accurately the number of vmovls required for NEON.
- Pass the instruction to the pass implementation.
Differential Revision: https://reviews.llvm.org/D79561
We will now ensure ensure the return type of called function is the type
of all call sites we are going to rewrite. This avoids a problem
partially fixed by D79680. The part that was not covered is a use of
this "weird" casted call site (see `@func3` in `misc_crash.ll`).
misc_crash.ll checks are auto-generated now.
We should never give up on AAIsDead as it guards other AAs from
unreachable code (in which SSA properties are meaningless). We did
however use required dependences on some queries in AAIsDead which
caused us to invalidate AAIsDead if the queried AA got invalidated.
We now use optional dependences instead. The bug that exposed this is
added to the liveness.ll test and other test changes show the impact.
Bug report by @sdmitriev.
During an update of AAIsDead, new instructions become live. If we query
information from them, the result is often just the initial state, e.g.,
for call site `noreturn` and `nounwind`. We will now trigger an update
for cached attributes during the AAIsDead update, though other AAs might
later use the same API.
This patch addresses two issues related to adding inline functions to the import list while recursively going through the profiling data.
1. For callsite samples, only add an inlined function to the import list if it's from outside of the module (i.e. only has a declaration inside the module).
2. For body samples, add each target function to the import list if it's from outside of the module (i.e. only has a declaration inside the module). Previously we were using getSubProgram() to check whether it has dbg info, which is inaccurate. This fix properly add imports and could improve the quality of the pass.
Added a few changes to the test to catch these cases.
Differential Revision: https://reviews.llvm.org/D79379
Summary:
this patch fixe crash/asserts found in the test-suite.
the AssumeptionCache cannot be assumed to have all assumes contrary to what i tought.
prevent generation of information for terminators, because this can create broken IR in transfromation where we insert the new terminator before removing the old one.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79458
don't span their entire scope.
The previous commit (6d1c40c171) is an older version of the test.
Reviewed By: aprantl, vsk
Differential Revision: https://reviews.llvm.org/D79573
The old QuerriedAAs contained two vectors, one for required one for
optional dependences (=queries). We now use a single vector and encode
the kind directly in the pointer.
This reduces memory consumption and makes the connection between
abstract attributes and their dependences clearer.
No functional change is intended, changes in the test are due to
different order in the query map. Neither the order before nor now is in
any way special.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 543734 (329735/s)
temporary memory allocations: 105895 (64217/s)
peak heap memory consumption: 19.19MB
peak RSS (including heaptrack overhead): 102.26MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 513292 (341511/s)
temporary memory allocations: 106028 (70544/s)
peak heap memory consumption: 13.35MB
peak RSS (including heaptrack overhead): 95.64MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: -30442 (208506/s)
temporary memory allocations: 133 (-910/s)
peak heap memory consumption: -5.84MB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
---
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D78729
When we have an existing `argmemonly` or `inaccessiblememorargmemonly`
we used to "know" that information. However, interprocedural constant
propagation can invalidate these attributes. We now ignore and remove
these attributes for internal functions (which may be affected by IP
constant propagation), if we are deriving new attributes for the
function.
As we replace values with constants interprocedurally, we also need to
do this "look-through" step during the generic value traversal or we
would derive properties from replaced values. While this is often not
problematic, it is when we use the "kind" of a value for reasoning,
e.g., accesses to arguments allow `argmemonly`.
We now use getPointerDereferenceableBytes to determine `nonnull` and
`dereferenceable` facts from the IR. We also use getPointerAlignment in
AAAlign for the same reason. The latter can interfere with callbacks so
we do restrict it to non-function-pointers for now.
Defaulting to -Xclang -coverage-version='407*' makes .gcno/.gcda
compatible with gcov [4.7,8)
In addition, delete clang::CodeGenOptionsBase::CoverageExtraChecksum and GCOVOptions::UseCfgChecksum.
We can infer the information from the version.
With this change, .gcda files produced by `clang --coverage a.o` linked executable can be read by gcov 4.7~7.
We don't need other -Xclang -coverage* options.
There may be a mismatching version warning, though.
(Note, GCC r173147 "split checksum into cfg checksum and line checksum"
made gcov 4.7 incompatible with previous versions.)
rL144865 incorrectly wrote function names for GCOV_TAG_FUNCTION
(this might be part of the reasons the header says
"We emit files in a corrupt version of GCOV's "gcda" file format").
rL176173 and rL177475 realized the problem and introduced -coverage-no-function-names-in-data
to work around the issue. (However, the description is wrong.
libgcov never writes function names, even before GCC 4.2).
In reality, the linker command line has to look like:
clang --coverage -Xclang -coverage-version='407*' -Xclang -coverage-cfg-checksum -Xclang -coverage-no-function-names-in-data
Failing to pass -coverage-no-function-names-in-data can make gcov 4.7~7
either produce wrong results (for one gcov-4.9 program, I see "No executable lines")
or segfault (gcov-7).
(gcov-8 uses an incompatible format.)
This patch deletes -coverage-no-function-names-in-data and the related
function names support from libclang_rt.profile
Summary:
The assume builder was non-deterministic when working on unamed values.
this patch fixes this.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, mgrang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78616
Summary: with this patch the assume salvageKnowledge will not generate assume if all knowledge is already available in an assume with valid context. assume bulider can also in some cases update an existing assume with better information.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78014
We have a transform in the opposite direction only for the x86 MMX type,
Other types are not handled either way before this patch.
The motivating case from PR45748:
https://bugs.llvm.org/show_bug.cgi?id=45748
...is the last test diff. In that example, we are triggering an existing
bitcast transform, so we reduce the number of casts, and that should give
us the ideal x86 codegen.
Differential Revision: https://reviews.llvm.org/D79171