I looked into adding a warning / error for this to FileCheck, but there doesn't
seem to be a good way to avoid it triggering on the instances of it in RUN lines.
llvm-svn: 244481
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
This restores the commit from SVN r219899 with an additional change to ensure
that the CodeGen is correct for the case that was identified as being incorrect
(originally PR7272).
In the case that during inlining we need to synthesize a value on the stack
(i.e. for passing a value byval), then any function involving that alloca must
be stripped of its tailness as the restriction that it does not access the
parent's stack no longer holds. Unfortunately, a single alloca can cause a
rippling effect through out the inlining as the value may be aliased or may be
mutated through an escaped external call. As such, we simply track if an alloca
has been introduced in the frame during inlining, and strip any tail calls.
llvm-svn: 220811
This reverts commit r219899.
This also updates byval-tail-call.ll to make it clear what was breaking.
Adding r219899 again will cause the load/store to disappear.
llvm-svn: 220093
Make tail recursion elimination a bit more aggressive. This allows us to get
tail recursion on functions that are just branches to a different function. The
fact that the function takes a byval argument does not restrict it from being
optimised into just a tail call.
llvm-svn: 219899
The number of tail call to loop conversions remains the same (1618 by my count).
The new algorithm does a local scan over the use-def chains to identify local "alloca-derived" values, as well as points where the alloca could escape. Then, a visit over the CFG marks blocks as being before or after the allocas have escaped, and annotates the calls accordingly.
llvm-svn: 208017
The -tailcallelim pass should be checking if byval or inalloca args can
be captured before marking calls as tail calls. This was the real root
cause of PR7272.
With a better fix in place, revert the inliner change from r105255. The
test case it introduced still passes and has been moved to
test/Transforms/Inline/byval-tail-call.ll.
Reviewers: chandlerc
Differential Revision: http://reviews.llvm.org/D3403
llvm-svn: 206789
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
Without the changes introduced into this patch, if TRE saw any allocas at all,
TRE would not perform TRE *or* mark callsites with the tail marker.
Because TRE runs after mem2reg, this inadequacy is not a death sentence. But
given a callsite A without escaping alloca argument, A may not be able to have
the tail marker placed on it due to a separate callsite B having a write-back
parameter passed in via an argument with the nocapture attribute.
Assume that B is the only other callsite besides A and B only has nocapture
escaping alloca arguments (*NOTE* B may have other arguments that are not passed
allocas). In this case not marking A with the tail marker is unnecessarily
conservative since:
1. By assumption A has no escaping alloca arguments itself so it can not
access the caller's stack via its arguments.
2. Since all of B's escaping alloca arguments are passed as parameters with
the nocapture attribute, we know that B does not stash said escaping
allocas in a manner that outlives B itself and thus could be accessed
indirectly by A.
With the changes introduced by this patch:
1. If we see any escaping allocas passed as a capturing argument, we do
nothing and bail early.
2. If we do not see any escaping allocas passed as captured arguments but we
do see escaping allocas passed as nocapture arguments:
i. We do not perform TRE to avoid PR962 since the code generator produces
significantly worse code for the dynamic allocas that would be created
by the TRE algorithm.
ii. If we do not return twice, mark call sites without escaping allocas
with the tail marker. *NOTE* This excludes functions with escaping
nocapture allocas.
3. If we do not see any escaping allocas at all (whether captured or not):
i. If we do not have usage of setjmp, mark all callsites with the tail
marker.
ii. If there are no dynamic/variable sized allocas in the function,
attempt to perform TRE on all callsites in the function.
Based off of a patch by Nick Lewycky.
rdar://14324281.
llvm-svn: 186057