This call should in fact be made by RegScavenger::enterBasicBlock()
called below. The first call does nothing except for triggering UB,
indicated by UBSan (passing nullptr to memset()).
llvm-svn: 254548
Re-enable shrink wrapping for PPC64 Little Endian.
One minor modification to PPCFrameLowering::findScratchRegister was necessary to handle fall-thru blocks (blocks with no terminator) correctly.
Tested with all LLVM test, clang tests, and the self-hosting build, with no problems found.
PHabricator: http://reviews.llvm.org/D14778
llvm-svn: 254314
The changes in this patch are as follows:
1. Modify the emitPrologue and emitEpilogue methods to work properly when the prologue and epilogue blocks are not the first/last blocks in the function
2. Fix a bug in PPCEarlyReturn optimization caused by an empty entry block in the function
3. Override the runShrinkWrap PredicateFtor (defined in TargetMachine) to check whether shrink wrapping should run:
Shrink wrapping will run on PPC64 (Little Endian and Big Endian) unless -enable-shrink-wrap=false is specified on command line
A new test case, ppc-shrink-wrapping.ll was created based on the existing shrink wrapping tests for x86, arm, and arm64.
Phabricator review: http://reviews.llvm.org/D11817
llvm-svn: 247237
We have a detailed def/use lists for every physical register in
MachineRegisterInfo anyway, so there is little use in maintaining an
additional bitset of which ones are used.
Removing it frees us from extra book keeping. This simplifies
VirtRegMap.
Differential Revision: http://reviews.llvm.org/D10911
llvm-svn: 242173
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
llvm-svn: 242165
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).
I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).
The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.
llvm-svn: 230413
Canonicalize access to function attributes to use the simpler API.
getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
=> getFnAttribute(Kind)
getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
=> hasFnAttribute(Kind)
llvm-svn: 229224
See full discussion in http://reviews.llvm.org/D7491.
We now hide the add-immediate and call instructions together in a
separate pseudo-op, which is tagged to define GPR3 and clobber the
call-killed registers. The PPCTLSDynamicCall pass prior to RA now
expands this op into the two separate addi and call ops, with explicit
definitions of GPR3 on both instructions, and explicit clobbers on the
call instruction. The pass is now marked as requiring and preserving
the LiveIntervals and SlotIndexes analyses, and fixes these up after
the replacement sequences are introduced.
Self-hosting has been verified on LE P8 and BE P7 with various
optimization levels, etc. It has also been verified with the
--no-tls-optimize flag workaround removed.
llvm-svn: 228725
Unfortunately, even with the workaround of disabling the linker TLS
optimizations in Clang restored (which has already been done), this still
breaks self-hosting on my P7 machine (-O3 -DNDEBUG -mcpu=native).
Bill is currently working on an alternate implementation to address the TLS
issue in a way that also fully elides the linker bug (which, unfortunately,
this approach did not fully), so I'm reverting this now.
llvm-svn: 228460
This patch is a third attempt to properly handle the local-dynamic and
global-dynamic TLS models.
In my original implementation, calls to __tls_get_addr were hidden
from view until the asm-printer phase, at which point the underlying
branch-and-link instruction was created with proper relocations. This
mostly worked well, but I used some repellent techniques to ensure
that the TLS_GET_ADDR nodes at the SD and MI levels correctly received
input from GPR3 and produced output into GPR3. This proved to work
badly in the presence of multiple TLS variable accesses, with the
copies to and from GPR3 being scheduled incorrectly and generally
creating havoc.
In r221703, I addressed that problem by representing the calls to
__tls_get_addr as true calls during instruction lowering. This had
the advantage of removing all of the bad hacks and relying on the
existing call machinery to properly glue the copies in place. It
looked like this was going to be the right way to go.
However, as a side effect of the recent discovery of problems with
linker optimizations for TLS, we discovered cases of suboptimal code
generation with this strategy. The problem comes when tls_get_addr is
called for the same address, and there is a resulting CSE
opportunity. It turns out that in such cases MachineCSE will common
the addis/addi instructions that set up the input value to
tls_get_addr, but will not common the calls themselves. MachineCSE
does not have any machinery to common idempotent calls. This is
perfectly sensible, since presumably this would be done at the IR
level, and introducing calls in the back end isn't commonplace. In
any case, we end up with two calls to __tls_get_addr when one would
suffice, and that isn't good.
I presumed that the original design would have allowed commoning of
the machine-specific nodes that hid the __tls_get_addr calls, so as
suggested by Ulrich Weigand, I went back to that design and cleaned it
up so that the copies were properly held together by glue
nodes. However, it turned out that this didn't work either...the
presence of copies to physical registers kept the machine-specific
nodes from being commoned also.
All of which leads to the design presented here. This is a return to
the original design, except that no attempt is made to introduce
copies to and from GPR3 during instruction lowering. Virtual registers
are used until prior to register allocation. At that point, a special
pass is run that identifies the machine-specific nodes that hide the
tls_get_addr calls and introduces the copies to and from GPR3 around
them. The register allocator then coalesces these copies away. With
this design, MachineCSE succeeds in commoning tls_get_addr calls where
possible, and we get nice optimal code generation (better than GCC at
the moment, which does not common these calls).
One additional problem must be dealt with: After introducing the
mentions of the physical register GPR3, the aggressive anti-dependence
breaker sees opportunities to improve scheduling by selecting a
different register instead. Flags must be used on the instruction
descriptions to tell the anti-dependence breaker to keep its hands in
its pockets.
One thing missing from the original design was recording a definition
of the link register on the GET_TLS_ADDR nodes. Doing this was found
to be insufficient to force a stack frame to be created, which led to
looping behavior because two different LR values were stored at the
same address. This appears to have been an oversight in
PPCFrameLowering::determineFrameLayout(), which is repaired here.
Because MustSaveLR() returns true for calls to builtin_return_address,
this changed the expected behavior of
test/CodeGen/PowerPC/retaddr2.ll, which now stacks a frame but
formerly did not. I've fixed the test case to reflect this.
There are existing TLS tests to catch regressions; the checks in
test/CodeGen/PowerPC/tls-store2.ll proved to be too restrictive in the
face of instruction scheduling with these changes, so I fixed that
up.
I've added a new test case based on the PrettyStackTrace module that
demonstrated the original problem. This checks that we get correct
code generation and that CSE of the calls to __get_tls_addr has taken
place.
llvm-svn: 227976
This re-applies r225808, fixed to avoid problems with SDAG dependencies along
with the preceding fix to ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs.
These problems caused the original regression tests to assert/segfault on many
(but not all) systems.
Original commit message:
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
llvm-svn: 225909
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
llvm-svn: 225808
We really need a separate 64-bit version of this instruction so that it can be
marked as clobbering LR8 (instead of just LR). No change in functionality
(although the verifier might be slightly happier), however, it is required for
stackmap/patchpoint support. Thus, this will be covered by stackmap test cases
once those are added.
llvm-svn: 225804
Summary:
In the previous commit, the register was saved, but space was not allocated.
This resulted in the parameter save area potentially clobbering r30, leading to
nasty results.
Test Plan: Tests updated
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6906
llvm-svn: 225573
Summary: The PIC additions didn't update the prologue and epilogue code to save and restore r30 (PIC base register). This does that.
Test Plan: Tests updated.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6876
llvm-svn: 225450
Summary:
PowerPC DWARF unwind info defined CFA as SP + offset even in a function
where the stack had been dynamically realigned. This clearly doesn't
work because the offset from SP to CFA is not a constant. Fix it by
defining CFA as BP instead.
This was causing the AddressSanitizer null_deref test to fail 50% of
the time, depending on whether SP happened to be 32-byte aligned on
entry to a particular function or not.
Reviewers: willschm, uweigand, hfinkel
Reviewed By: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6410
llvm-svn: 222996
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
This is a minor improvement in the ELFv2 ABI. In ELFv1, DWARF CFI
would represent a saved CR word (holding CR fields CR2, CR3, and CR4)
using just a single CFI record refering to CR2. In ELFv2 instead,
each of the CR fields is represented by its own CFI record. The
advantage is that the compiler can now chose to save just a single
(or two) CR fields instead of all of them, if those are the only ones
that actually need saving. That can lead to more efficient code using
mf(o)crf instead of the (slow) mfcr instruction.
Note that this patch does not (yet) implement this more efficient
code generation, but it does implement the part that is required to
be ABI compliant: creating multiple CFI records if multiple CR fields
are saved.
Reviewed by Hal Finkel.
llvm-svn: 213492
The ELFv2 ABI reduces the amount of stack required to implement an
ABI-compliant function call in two ways:
* the "linkage area" is reduced from 48 bytes to 32 bytes by
eliminating two unused doublewords
* the 64-byte "parameter save area" is now optional and need not be
present in certain cases (it remains mandatory in functions with
variable arguments, and functions that have any parameter that is
passed on the stack)
The following patch implements this required changes:
- reducing the linkage area, and associated relocation of the TOC save
slot, in getLinkageSize / getTOCSaveOffset (this requires updating all
callers of these routines to pass in the isELFv2ABI flag).
- (partially) handling the case where the parameter save are is optional
This latter part requires some extra explanation: Currently, we still
always allocate the parameter save area when *calling* a function.
That is certainly always compliant with the ABI, but may cause code to
allocate stack unnecessarily. This can be addressed by a follow-on
optimization patch.
On the *callee* side, in LowerFormalArguments, we *must* track
correctly whether the ABI guarantees that the caller has allocated
the parameter save area for our use, and the patch does so. However,
there is one complication: the code that handles incoming "byval"
arguments will currently *always* write to the parameter save area,
because it has to force incoming register arguments to the stack since
it must return an *address* to implement the byval semantics.
To fix this, the patch changes the LowerFormalArguments code to write
arguments to a freshly allocated stack slot on the function's own stack
frame instead of the argument save area in those cases where that area
is not present.
Reviewed by Hal Finkel.
llvm-svn: 213490
This adds initial support for PPC32 ELF PIC (Position Independent Code; the
-fPIC variety), thus rectifying a long-standing deficiency in the PowerPC
backend.
Patch by Justin Hibbits!
llvm-svn: 213427
As of r211495, the only remaining users of getMinCallFrameSize are in
core ABI code (LowerFormalParameter / LowerCall). This is actually a
good thing, since the details of the parameter save area are ABI specific.
With the new ELFv2 ABI in particular, the rules defining the size of the
save area will become significantly more complex, so it wouldn't make
sense to implement those outside ABI code that has all required
information.
In preparation, this patch eliminates the getMinCallFrameSize (and
associated getMinCallArgumentsSize) routines, and inlines them into all
callers. Note that since nearly all call arguments are constant, this
allows simplifying the inlined copies to a single line everywhere.
No change in generate code expected.
llvm-svn: 211497
The PPCFrameLowering::determineFrameLayout routine currently ensures
that every function that allocates a stack frame provides space for the
parameter save area (via PPCFrameLowering::getMinCallFrameSize).
This is actually not necessary. There may be functions that never call
another routine but still allocate a frame; those do not require the
parameter save area. In the future, with the ELFv2 ABI, even some
routines that do call other functions do not need to allocate the
parameter save area.
While it is not a bug to allocate the parameter area when it is not
needed, it is better to avoid it to save stack space.
Note that when any particular function call requires the parameter save
area, this space will already have been included by ABI code in the size
the CALLSEQ_START insn is annotated with, and therefore included in the
size returned by MFI->getMaxCallFrameSize().
This means that determineFrameLayout simply does not need to care about
the parameter save area. (It still needs to ensure that every frame
provides the linkage area.) This is implemented by this patch.
Note that this exposed a bug in the new fast-isel code where the parameter
area was *not* included in the CALLSEQ_START size; this is also fixed.
A couple of test cases needed to be adapted for the new (smaller) stack
frame size those tests now see.
llvm-svn: 211495
the initializeSubtargetDependencies code to obtain an initialized
subtarget and migrate a couple of subtarget using functions to the
.cpp file to avoid circular includes.
llvm-svn: 210822
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204
(Patch committed on behalf of Mark Minich, whose log entry follows.)
This is a continuation of the refactorings performed in svn rev 188573
(see that rev's comments for more detail).
This is my stage 2 refactoring: I combined the emitPrologue() &
emitEpilogue() PPC32 & PPC64 code into a single flow, simplifying a
lot of the code since in essence the PPC32 & PPC64 code generation
logic is the same, only the instruction forms are different (in most
cases). This simplification is necessary because my functional changes
(yet to come) add significant complexity, and without the
simplification of my stage 2 refactoring, the overall complexity of
both emitPrologue() & emitEpilogue() would have become almost
intractable for most mortal programmers (like me).
This submission was intended to be a pure refactoring (no functional
changes whatsoever). However, in the process of combining the PPC32 &
PPC64 flows, I spotted a difference that I believe is a bug (see svn
rev 186478 line 863, or svn rev 188573 line 888): This line appears to
be restoring the BP with the original FP content, not the original BP
content. When I merged the 32-bit and 64-bit code, I used the
corresponding code from the 64-bit flow, which I believe uses the
correct offset (BPOffset) for this operation.
llvm-svn: 188741
safe on PPC32 SVR4 ABI
[Patch and following text by Mark Minich; committing on his behalf.]
There are FIXME's in PowerPC/PPCFrameLowering.cpp, method
PPCFrameLowering::emitPrologue() related to "negative offsets of R1"
on PPC32 SVR4. They're true, but the real issue is that on PPC32 SVR4
(and any ABI without a Red Zone), no spills may be made until after
the stackframe is claimed, which also includes the LR spill which is
at a positive offset. The same problem exists in emitEpilogue(),
though there's no FIXME for it. I intend to fix this issue, making
LLVM-compiled code finally safe for use on SVR4/EABI/e500 32-bit
platforms (including in particular, OS-free embedded systems & kernel
code, where interrupts may share the same stack as user code).
In preparation for making these changes, to make the diffs for the
functional changes less cluttered, I am providing the non-functional
refactorings in two stages:
Stage 1 does some minor fluffy refactorings to pull multiple method
calls up into a single bool, creating named bools for repeated uses of
obscure logic, moving some code up earlier because either stage 2 or
my final version will require it earlier, and rewording/adding some
comments. My stage 1 changes can be characterized as primarily fluffy
cleanup, the purpose of which may be unclear until the stage 2 or
final changes are made.
My stage 2 refactorings combine the separate PPC32 & PPC64 logic,
which is currently performed by largely duplicate code, into a single
flow, with the differences handled by a group of constants initialized
early in the methods.
This submission is for my stage 1 changes. There should be no
functional changes whatsoever; this is a pure refactoring.
llvm-svn: 188573
Support for dynamic stack alignments in the PPC backend has been unfinished, in
part because it depends on dynamic stack realignment (which I only just
recently implemented fully). Now we can also support dynamic allocas with
higher than the default target stack alignment (16 bytes).
In order to round-up the requested size to the maximum requested alignment, we
need an additional register to hold the rounded-up size. We're already using one
scavenged register to hold the previous stack-pointer value (which needs to be
stored with the signal-safe stdux update), and so when we have dynamic allocas
and a large alignment, we allocate two emergency spill slots for the scavenger.
llvm-svn: 186562
First, this changes the base-pointer implementation to remove an unnecessary
complication (and one that is incompatible with how builtin SjLj is
implemented): instead of using r31 as the base pointer when it is not needed as
a frame pointer, now the base pointer will always be r30 when needed.
Second, we introduce another pseudo register, BP, which is used just like the FP
pseudo register to refer to the base register before we know for certain what
register it will be.
Third, we now save BP into the jmp_buf, and restore r30 from that slot in
longjmp. If the function that called setjmp did not use a base pointer, then
r30 will be overwritten by the setjmp-calling-function's restore code. FP
restoration (which is restored into r31) works the same way.
llvm-svn: 186545
This builds on some frame-lowering code that has existed since 2005 (r24224)
but was disabled in 2008 (r48188) because it needed base pointer support to
function correctly. This implementation follows the strategy suggested by Dale
Johannesen in r48188 where the following comment was added:
This does not currently work, because the delta between old and new stack
pointers is added to offsets that reference incoming parameters after the
prolog is generated, and the code that does that doesn't handle a variable
delta. You don't want to do that anyway; a better approach is to reserve
another register that retains to the incoming stack pointer, and reference
parameters relative to that.
And now we do exactly that. If we don't need a frame pointer, then we use r31
as a base pointer. If we do need a frame pointer, then we use r30 as a base
pointer. The base pointer retains the value of the stack pointer before it was
decremented in the prologue. We then use the base pointer to resolve all
negative frame indicies. The basic scheme follows that for base pointers in the
X86 backend.
We use a base pointer when we need to dynamically realign the incoming stack
pointer. This currently applies only to static objects (dynamic allocas with
large alignments, and base-pointer support in SjLj lowering will come in future
commits).
llvm-svn: 186478
Just as with mfocrf, it is also preferable to use mtocrf instead of
mtcrf when only a single CR register is to be written.
Current code however always emits mtcrf. This probably does not matter
when using an external assembler, since the GNU assembler will in fact
automatically replace mtcrf with mtocrf when possible. It does create
inefficient code with the integrated assembler, however.
To fix this, this patch adds MTOCRF/MTOCRF8 instruction patterns and
uses those instead of MTCRF/MTCRF8 everything. Just as done in the
MFOCRF patch committed as 185556, these patterns will be converted
back to MTCRF if MTOCRF is not available on the machine.
As a side effect, this allows to modify the MTCRF pattern to accept
the full range of mask operands for the benefit of the asm parser.
llvm-svn: 185561