Fix a case where we were incorrectly sign-extending a value when we should have been zero-extending the value.
Also change some SIGN_EXTEND to ANY_EXTEND because we really dont care and may have more opportunity to fold subexpressions
llvm-svn: 185331
Math functions are mark as readonly because they read the floating point
rounding mode. Because we don't vectorize loops that would contain function
calls that set the rounding mode it is safe to ignore this memory read.
llvm-svn: 185299
Changing the sign when comparing the base pointer would introduce all
sorts of unexpected things like:
%gep.i = getelementptr inbounds [1 x i8]* %a, i32 0, i32 0
%gep2.i = getelementptr inbounds [1 x i8]* %b, i32 0, i32 0
%cmp.i = icmp ult i8* %gep.i, %gep2.i
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = icmp ne i1 %cmp.i, %cmp.i1
ret i1 %cmp
into:
%cmp.i = icmp slt [1 x i8]* %a, %b
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = xor i1 %cmp.i, %cmp.i1
ret i1 %cmp
By preserving the original sign, we now get:
ret i1 false
This fixes PR16483.
llvm-svn: 185259
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185257
We may, after other optimizations, find ourselves with IR that looks
like:
%shl = shl i32 1, %y
%cmp = icmp ult i32 %shl, 32
Instead, we should just compare the shift count:
%cmp = icmp ult i32 %y, 5
llvm-svn: 185242
This fixes PR16418, which reports that a function calling
__builtin_unwind_init() asserts. The cause is that this generates a
spill/restore for VRSAVE, and we support that only on Darwin (because VRSAVE is
only really used on Darwin).
The test case checks only that we don't crash. We can add correctness checks
once someone verifies what behavior the function is supposed to have.
llvm-svn: 185235
To support this we have to insert 'extractelement' instructions to pick the right lane.
We had this functionality before but I removed it when we moved to the multi-block design because it was too complicated.
llvm-svn: 185230
- lit tests verify that each line of input LLVM IR gets a !dbg node and a
corresponding entry of metadata that contains the line number
- unit tests verify that DebugIR works as advertised in the interface
- refactored some useful IR generation functionality from the MCJIT unit tests
so it can be reused
llvm-svn: 185212
On OpenBSD, the stack-smash protection transform uses "__guard_local"
and "__stack_smash_handler" instead of "__stack_chk_guard" and
"__stack_chk_fail". However, CodeGen/PowerPC/stack-protector.ll
doesn't specify a target OS, so on OpenBSD it fails.
Add -mtriple=ppc32-unknown-linux to make the test host-OS agnostic. While
there, convert to FileCheck.
Patch by Matthew Dempsky.
llvm-svn: 185206
Based on GCC's output for TLS variables (OP_constNu, x@dtpoff,
OP_lo_user), this implements debug info support for TLS in ELF. Verified
that this output is correct/sufficient on Linux (using gold - if you're
using binutils-ld, you'll need something with the fix for
http://sourceware.org/bugzilla/show_bug.cgi?id=15685 in it).
Support on non-ELF is sort of "arbitrary" at the moment - if Apple folks
want to discuss (or just go ahead & implement) how this should work in
MachO, etc, I'm open.
llvm-svn: 185203
Under certain (evidently rare) circumstances, this code used to convert OR(a,
AND(x, y)) into OR(a, x). This was incorrect.
While there, I've added a comment to the code immediately above.
llvm-svn: 185201
should expand ATOMIC_CMP_SWAP nodes the same way that it does for ATOMIC_SWAP.
Since ATOMIC_LOADs on some targets (e.g. older ARM variants) get legalized to
ATOMIC_CMP_SWAPs, the missing case had been causing i64 atomic loads to crash
during isel.
<rdar://problem/14074644>
llvm-svn: 185186
Fix ABI handling for function
returning bool -- use st.param.b32 to return the value
and use ld.param.b32 in caller to load the return value.
llvm-svn: 185177
This patch assigns paired GPRs for inline asm with
64-bit data on ARM. It's enabled for both ARM and Thumb to support modifiers
like %H, %Q, %R.
llvm-svn: 185169
We were generating intrinsics for NEON fixed-point conversions that didn't
exist (e.g. float -> i16). There are two cases to consider:
+ iN is smaller than float. In this case we can do the conversion but need an
extend or truncate as well.
+ iN is larger than float. In this case using the NEON conversion would be
incorrect so we don't perform any combining.
llvm-svn: 185158
The mapping between SRS pseudo-instructions and SRS native instructions was incorrect, the correct mapping is:
srsfa -> srsib
srsea -> srsia
srsfd -> srsdb
srsed -> srsda
This fixes <rdar://problem/14214734>.
llvm-svn: 185155
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
llvm-svn: 185135
algorithm when assigning EnumValues to the synthesized registers.
The current algorithm, LessRecord, uses the StringRef compare_numeric
function. This function compares strings, while handling embedded numbers.
For example, the R600 backend registers are sorted as follows:
T1
T1_W
T1_X
T1_XYZW
T1_Y
T1_Z
T2
T2_W
T2_X
T2_XYZW
T2_Y
T2_Z
In this example, the 'scaling factor' is dEnum/dN = 6 because T0, T1, T2
have an EnumValue offset of 6 from one another. However, in other parts
of the register bank, the scaling factors are different:
dEnum/dN = 5:
KC0_128_W
KC0_128_X
KC0_128_XYZW
KC0_128_Y
KC0_128_Z
KC0_129_W
KC0_129_X
KC0_129_XYZW
KC0_129_Y
KC0_129_Z
The diff lists do not work correctly because different kinds of registers have
different 'scaling factors'. This new algorithm, LessRecordRegister, tries to
enforce a scaling factor of 1. For example, the registers are now sorted as
follows:
T1
T2
T3
...
T0_W
T1_W
T2_W
...
T0_X
T1_X
T2_X
...
KC0_128_W
KC0_129_W
KC0_130_W
...
For the Mips and R600 I see a 19% and 6% reduction in size, respectively. I
did see a few small regressions, but the differences were on the order of a
few bytes (e.g., AArch64 was 16 bytes). I suspect there will be even
greater wins for targets with larger register files.
Patch reviewed by Jakob.
rdar://14006013
llvm-svn: 185094
The purpose of this test was to check boundary conditions for the size
of an ALU clause. This test is very sensitive to changes to the
optimizer or scheduler, because it requires an exact number of ALU
instructions in order to remain valid. It's not good to have a test
this sensitive, because it is confusing to developers who implement
optimizations and then 'break' the test.
I'm not sure if there is a good way to test these limits using lit, but
if I can come up with replacement test that isn't as sensitive I'll add
it back to the tree.
llvm-svn: 185084
Add pseudo conditional store instructions, so that we use:
branch foo:
store
foo:
instead of:
load
branch foo:
move
foo:
store
z196 has real 32-bit and 64-bit conditional stores, but we don't use
any z196 instructions yet.
llvm-svn: 185065
When we store values for reversed induction stores we must not store the
reversed value in the vectorized value map. Another instruction might use this
value.
This fixes 3 test cases of PR16455.
llvm-svn: 185051
The Builtin attribute is an attribute that can be placed on function call site that signal that even though a function is declared as being a builtin,
rdar://problem/13727199
llvm-svn: 185049
Unfortunately this addresses two issues (by the time I'd disentangled the logic
it wasn't worth putting it back to half-broken):
+ Coprocessor instructions should all be predicable in Thumb mode.
+ BKPT should never be predicable.
llvm-svn: 184965
The assembler currently strictly verifies that immediates for
s16imm operands are in range (-32768 ... 32767). This matches
the behaviour of the GNU assembler, with one exception: gas
allows, as a special case, operands in an extended range
(-65536 .. 65535) for the addis instruction only (and its
extended mnemonic lis).
The main reason for this seems to be to allow using unsigned
16-bit operands for lis, e.g. like lis %r1, 0xfedc.
Since this has been supported by gas for a long time, and
assembler source code seen "in the wild" actually exploits
this feature, this patch adds equivalent support to LLVM
for compatibility reasons.
llvm-svn: 184946
Currently, all instructions taking s16imm operands support symbolic
operands. However, for u16imm operands, we only support actual
immediate integers. This causes the assembler to reject code like
ori %r5, %r5, symbol@l
This patch changes the u16imm operand definition to likewise
accept symbolic operands. In fact, s16imm and u16imm can
share the same encoding routine, now renamed to getImm16Encoding.
llvm-svn: 184944
This is easier to read than the internal fixed-point representation.
If anybody knows the correct algorithm for converting fixed-point
numbers to base 10, feel free to fix it.
llvm-svn: 184881
When a 1-element vector alloca is promoted, a store instruction can often be
rewritten without converting the value to a scalar and using an insertelement
instruction to stuff it into the new alloca. This patch just adds a check
to skip that conversion when it is unnecessary. This turns out to be really
important for some ARM Neon operations where <1 x i64> is used to get around
the fact that i64 is not a legal type.
llvm-svn: 184870
Note: Only adding test for evergreen, not SI yet.
When I attempted to expand vselect for SI, I got the following:
llc: /home/awatry/src/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp:522:
llvm::SDValue llvm::DAGTypeLegalizer::PromoteIntRes_SETCC(llvm::SDNode*):
Assertion `SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
"Vector compare must return a vector result!"' failed.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184847
No test/expansion for SI has been added yet. Attempts to expand this
operation for SI resulted in a stacktrace in (IIRC) LegalizeIntegerTypes
which was complaining about vector comparisons being required to return
a vector type.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184845
Also add lit test for both cases on SI, and v2i32 for evergreen.
Note: I followed the guidance of the v4i32 EG check... UREM produces really
complex code, so let's just check that the instruction was lowered
successfully.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184844
Also add lit test for both cases on SI, and v2i32 for evergreen.
Note: I followed the guidance of the v4i32 EG check... UDIV produces really
complex code, so let's just check that the instruction was lowered
successfully.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184843
This is a band-aid to fix the most severe regressions we're seeing from basing
spill decisions on block frequencies, until we have a better solution.
llvm-svn: 184835
This adds pattern for the rldcr and rldic instructions (the last instruction
from the rotate/shift family that were missing). They are currently used
only by the asm parser.
llvm-svn: 184833
In reality, some unaligned memory accesses are legal for 32-bit types and
smaller too, but it all depends on the address space. Allowing
unaligned loads/stores for > 32-bit types is mainly to prevent the
legalizer from splitting one load into multiple loads of smaller types.
https://bugs.freedesktop.org/show_bug.cgi?id=65873
llvm-svn: 184822
This should only make a difference in programs that use a lot of the
vector ALU instructions like BFI_INT and BIT_ALIGN. There is a slight
improvement in the phatk bitcoin mining kernel with this patch on
Evergreen (vector size == 1):
Before:
1173 Instruction Groups / 9520 dwords
After:
1167 Instruction Groups / 9510 dwords
Reviewed-by: Reviewed-by: Vincent Lejeune<vljn at ovi.com>
llvm-svn: 184819