After several refactorings on the MCJIT remote communication, things are
finally looking good on Clang-compiled LLVM regarding MCJIT remote tests,
so I'm re-enabling them to see how the self-hosting buildbot behaves over
a longer period.
llvm-svn: 200102
initialized from a constant expression in C++98, it can be used in
constant expressions, even if it was brace-initialized. Patch by
Rahul Jain!
llvm-svn: 200098
I disabled the use of TBAA in CodeGen in r200093. This adds a test case that
demonstrates the problems with inttoptr and TBAA in CodeGen (and, specifically,
the problem that causes LLVM to miscompile itself in Release mode). This test
will currently fail if -use-tbaa-in-sched-mi is enabled.
llvm-svn: 200097
When clang is built outside of the LLVM tree (against a corresponding version),
there is no definition providing for operator<<(std::ostream &, StringRef) which
is required for the assertion routines in google-test tests. Avoid the
compilation failure by explicitly stringifying the StringRef prior to use.
llvm-svn: 200096
There are currently two issues, of which I currently know, that prevent TBAA
from being correctly usable in CodeGen:
1. Stack coloring does not update TBAA when merging allocas. This is easy
enough to fix, but is not the largest problem.
2. CGP inserts ptrtoint/inttoptr pairs when sinking address computations.
Because BasicAA does not handle inttoptr, we'll often miss basic type punning
idioms that we need to catch so we don't miscompile real-world code (like LLVM).
I don't yet have a small test case for this, but this fixes self hosting a
non-asserts build of LLVM on PPC64 when using -enable-aa-sched-mi and -misched=shuffle.
llvm-svn: 200093
This fixes a regression introduced by r182908, which broke
llvm-objdump's ability to display relocations inline in a disassembly
dump for ELF object files.
That change removed a SectionRelocMap from Object/ELF.h, which we
recreate in llvm-objdump.cpp.
I discovered this regression via an out-of-tree test
(test/NaCl/X86/pnacl-hides-sandbox-x86-64.ll) which used llvm-objdump.
Note that the "Unknown" string in the test output on i386 isn't quite
right, but this appears to be a pre-existing bug.
Differential Revision: http://llvm-reviews.chandlerc.com/D2559
llvm-svn: 200090
This option (which is !NDEBUG only) allows restricting the use of alias
analysis in DAGCombiner to a specific function. This has proved extremely
valuable to isolating bugs related to this feature, and mirrors the
misched-only-func option provided by the new instruction scheduler.
llvm-svn: 200088
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
r200064 depends on r200051.
r200051 is broken: I tries to replace .mips_hack_elf_flags, which is a good
thing, but what it replaces it with is even worse.
The new emitMipsELFFlags it adds corresponds to no assembly directive, is not
marked as a hack and is not even printed to the .s file.
The patch also introduces more uses of hasRawTextSupport.
The correct way to remove .mips_hack_elf_flags is to have the mips target
streamer handle the default flags (and command line options). That way the
same code path is used for asm and obj. The streamer interface should *really*
correspond to what is printed in the .s file.
llvm-svn: 200078
Reduces the ARCMT migrator plist writer down to a single function,
arcmt::writeARCDiagsToPlist() which shares supporting functions with the
analyzer plist writer.
llvm-svn: 200075
a FunctionPass. With this change the loop vectorizer no longer is a loop
pass and can readily depend on function analyses. In particular, with
this change we no longer have to form a loop pass manager to run the
loop vectorizer which simplifies the entire pass management of LLVM.
The next step here is to teach the loop vectorizer to leverage profile
information through the profile information providing analysis passes.
llvm-svn: 200074
There are a couple of pieces:
* some lazy-evaluation members that store info listed in a qSupported response
* new method SendPacketsAndConcatenateResponses which is used for
fetching fixed-size objects from the remote gdbserver by using multiple
packets if necessary (first use will be to fetch shared-library XML files).
llvm-svn: 200072
GetU32 and GetU64, to use memcpy to copy bytes into a local buffer instead
of having a (uint64_t *) etc local variable, pointing to the address, and
dereferencing it. If compiled on a CPU where data alignment is required
(e.g. the LDM instruction on armv7) and we try to GetU64 out of a mmap'ed
DWARF file, that 8 byte quantity may not be world aligned and the program
can get an unaligned memory access fault.
<rdar://problem/15849231>
llvm-svn: 200069
the loops in a function, and teach LICM to work in the presance of
LCSSA.
Previously, LCSSA was a loop pass. That made passes requiring it also be
loop passes and unable to depend on function analysis passes easily. It
also caused outer loops to have a different "canonical" form from inner
loops during analysis. Instead, we go into LCSSA form and preserve it
through the loop pass manager run.
Note that this has the same problem as LoopSimplify that prevents
enabling its verification -- loop passes which run at the end of the loop
pass manager and don't preserve these are valid, but the subsequent loop
pass runs of outer loops that do preserve this pass trigger too much
verification and fail because the inner loop no longer verifies.
The other problem this exposed is that LICM was completely unable to
handle LCSSA form. It didn't preserve it and it actually would give up
on moving instructions in many cases when they were used by an LCSSA phi
node. I've taught LICM to support detecting LCSSA-form PHI nodes and to
hoist and sink around them. This may actually let LICM fire
significantly more because we put everything into LCSSA form to rotate
the loop before running LICM. =/ Now LICM should handle that fine and
preserve it correctly. The down side is that LICM has to require LCSSA
in order to preserve it. This is just a fact of life for LCSSA. It's
entirely possible we should completely remove LCSSA from the optimizer.
The test updates are essentially accomodating LCSSA phi nodes in the
output of LICM, and the fact that we now completely sink every
instruction in ashr-crash below the loop bodies prior to unrolling.
With this change, LCSSA is computed only three times in the pass
pipeline. One of them could be removed (and potentially a SCEV run and
a separate LoopPassManager entirely!) if we had a LoopPass variant of
InstCombine that ran InstCombine on the loop body but refused to combine
away LCSSA PHI nodes. Currently, this also prevents loop unrolling from
being in the same loop pass manager is rotate, LICM, and unswitch.
There is one thing that I *really* don't like -- preserving LCSSA in
LICM is quite expensive. We end up having to re-run LCSSA twice for some
loops after LICM runs because LICM can undo LCSSA both in the current
loop and the parent loop. I don't really see good solutions to this
other than to completely move away from LCSSA and using tools like
SSAUpdater instead.
llvm-svn: 200067
right after the space for it is allocated on the stack, instead of trying
to initialize it in all the different places in this method. It's too easy
for another uninitialized code path to sneak in as it is written right now.
llvm-svn: 200066