This enables use of the 'R' and 'T' memory constraints for inline ASM
operands on SystemZ, which allow an index register as well as an
immediate displacement. This patch includes corresponding documentation
and test case updates.
As with the last patch of this kind, I moved the 'm' constraint to the
most general case, which is now 'T' (base + 20-bit signed displacement +
index register).
Author: colpell
Differential Revision: http://reviews.llvm.org/D21239
llvm-svn: 272547
Summary: This also deprecated the get attribute function familly.
Reviewers: Wallbraker, whitequark, joker.eph, echristo, rafael, jyknight
Subscribers: axw, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19181
llvm-svn: 272504
Summary:
This documents the various relocation types that are supported by the
Radeon Open Compute (ROC) runtime (which is essentially the dynamic
linker for AMDGPU).
Only R_AMDGPU_32 is not currently supported by the ROC runtime, but
it will usually be resolved at link time by lld.
Patch by: Konstantin Zhuravlyov
Reviewers: kzhuravl, rafael
Subscribers: rafael, arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D20952
llvm-svn: 272352
This enables use of the 'S' constraint for inline ASM operands on
SystemZ, which allows for a memory reference with a signed 20-bit
immediate displacement. This patch includes corresponding documentation
and test case updates.
I've changed the 'T' constraint to match the new behavior for 'S', as
'T' also uses a long displacement (though index constraints are still
not implemented). I also changed 'm' to match the behavior for 'S' as
this will allow for a wider range of displacements for 'm', though
correct me if that's not the right decision.
Author: colpell
Differential Revision: http://reviews.llvm.org/D21097
llvm-svn: 272266
Changes since the initial commit:
- Use echo instead of printf. This should side-step the character
escaping issues on Windows.
Differential Revision: http://reviews.llvm.org/D20980
llvm-svn: 272068
take into account modernizations in r246002 and r270381.
Patch based on http://reviews.llvm.org/D20954 by Miroslav Hrncir.
Thanks Miroslav!
llvm-svn: 271985
Summary:
This is an initial implementation of a Hardened Allocator based on Sanitizer Common's CombinedAllocator.
It aims at mitigating heap based vulnerabilities by adding several features to the base allocator, while staying relatively fast.
The following were implemented:
- additional consistency checks on the allocation function parameters and on the heap chunks;
- use of checksum protected chunk header, to detect corruption;
- randomness to the allocator base;
- delayed freelist (quarantine), to mitigate use after free and overall determinism.
Additional mitigations are in the works.
Reviewers: eugenis, aizatsky, pcc, krasin, vitalybuka, glider, dvyukov, kcc
Subscribers: kubabrecka, filcab, llvm-commits
Differential Revision: http://reviews.llvm.org/D20084
llvm-svn: 271968
Changes since the initial commit:
- Normalize file paths read from the file to prevent Windows path
separators from escaping parts of the path.
- Since we need to store the normalized file paths in WeightedFile,
don't do tricky things to keep the source MemoryBuffer alive.
- Don't use list-initialization for a std::string in WeightedFile.
Differential Revision: http://reviews.llvm.org/D20980
llvm-svn: 271953
Changes since the initial commit:
- Normalize file paths read from the file to prevent Windows path
separators from escaping parts of the path.
- Since we need to store the normalized file paths in WeightedFile,
don't do tricky things to keep the source MemoryBuffer alive.
Differential Revision: http://reviews.llvm.org/D20980
llvm-svn: 271949
This chapter discusses IR optimizations, the ORC IRTransformLayer, and the ORC
layer concept itself.
The text is still pretty rough, but I think the main ideas are there. Feedback
is very welcome, as always.
llvm-svn: 271865
and/or tests aren't working on Windows currently.
There seems to be some problem with quoting the file paths. I don't
understand the test structure here or the code well enough to try to
come up with a way to correctly handle paths with back slashes in them,
and this has caused the Windows builds to be failing for 7 hours now, so
I'm reverting the whole thing to bring them back to life. Sorry for the
disruption, but a couple of these were bug fixes anyways that can be
folded into a fresh commit.
Reverts the following patches:
r271756: Clean up the way we create the input filenames buffer (NFC)
r271748: Fix use-after-free from discarded MemoryBuffer (NFC)
r271710: Fix option description (NFC)
r271709: Add option to ingest filepaths from a file
llvm-svn: 271760
The new option makes it possible to build external projects as part of
the llvm build without copying (or symlinking) then into llvm/tool with
specifying a few additional cmake variables.
Example usage (2 additional project called foo and bar):
-DLLVM_EXTERNAL_PROJECTS="Foo;Bar"
-DLLVM_EXTERNAL_FOO_SOURCE_DIR=/src/foo
-DLLVM_EXTERNAL_BAR_SOURCE_DIR=/src/bar
Note: This is the extension of the approach we already support for
clang/lldb/poly with adding an option to specify additional supported
projects.
Differential revision: http://reviews.llvm.org/D20838
llvm-svn: 271440
Summary:
It isn't clear what is the operational meaning of loading or storing an
unsized types, since it cannot be lowered into something meaningful.
Since there does not seem to be any practical need for it either, make
such loads and stores illegal IR.
Reviewers: majnemer, chandlerc
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20846
llvm-svn: 271402
This tidies up some code that was manually constructing RuntimeDyld::SymbolInfo
instances from JITSymbols. It will save more mess in the future when
JITSymbol::getAddress is extended to return an Expected<TargetAddress> rather
than just a TargetAddress, since we'll be able to embed the error checking in
the conversion.
llvm-svn: 271350
This patch adds an IR, assembly and bitcode representation for metadata
attachments for globals. Future patches will port existing features to use
these new attachments.
Differential Revision: http://reviews.llvm.org/D20074
llvm-svn: 271348
* Various tidy-up and streamlining of existing discussion.
* Describes findSymbol and removeModule.
Chapter 1 is now rough but essentially complete in terms of content.
Feedback, patches etc. very welcome.
llvm-svn: 271225
Summary: * docs/WritingAnLLVMBackend.rst: Makefiles are no longer used. The users should use CMakeLists.txt. In order to add the target, the TARGETS_TO_BUILD is replaced with LLVM_ALL_TARGETS.
Reviewers: gribozavr, void, beanz
Subscribers: llvm-commits
Patch By: Visoiu Mistrih Francis (thegameg)
Differential Revision: http://reviews.llvm.org/D20700
llvm-svn: 270921
The memory location that corresponds to a volatile operation is very
special. They are observed by the machine in ways which we cannot
reason about.
Differential Revision: http://reviews.llvm.org/D20555
llvm-svn: 270879
This is a work in progress - the chapter text is incomplete, though
the example code compiles and runs.
Feedback and patches are, as usual, most welcome.
llvm-svn: 270487
Summary: This needs to get in before anything is released concerning attribute. If the old name gets in the wild, then we are stuck with it forever. Putting it in its own diff should getting that part at least in fast.
Reviewers: Wallbraker, whitequark, joker.eph, echristo, rafael, jyknight
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D20417
llvm-svn: 270452
In practice only a few well known appending linkage variables work.
Currently if codegen sees an unknown appending linkage variable it will
just print it as a regular global. That is wrong as the symbol in the
produced object file has different semantics as the one provided by the
appending linkage.
This just errors early instead of producing a broken .o.
llvm-svn: 269706
This new verifier rule lets us unambigously pick a calling convention
when creating a new declaration for
`@llvm.experimental.deoptimize.<ty>`. It is also congruent with our
lowering strategy -- since all calls to `@llvm.experimental.deoptimize`
are lowered to calls to `__llvm_deoptimize`, it is reasonable to enforce
a unique calling convention.
Some of the tests that were breaking this verifier rule have had to be
split up into different .ll files.
The inliner was violating this rule as well, and has been fixed to avoid
producing invalid IR.
llvm-svn: 269261
An oddity of the .ll syntax is that the "@var = " in
@var = global i32 42
is optional. Writing just
global i32 42
is equivalent to
@0 = global i32 42
This means that there is a pretty big First set at the top level. The
current implementation maintains it manually. I was trying to refactor
it, but then started wondering why keep it a all. I personally find the
above syntax confusing. It looks like something is missing.
This patch removes the feature and simplifies the parser.
llvm-svn: 269096
Seems like my sphynx version is different than the one in the bot, as it
accepted everything locally. I think this is the right fix...
llvm-svn: 269062
HowToCrossCompile was outdated and generating too much traffic on the mailing
list with similar queries. This change helps offset most of the problems that
were reported recently including:
* Removing the -ccc-gcc-name, adding --sysroot
* Making references to Debian's multiarch for target libraries
* Expanding -DCMAKE_CXX_FLAGS for both GCC and Clang
* Some formatting and clarifications in the text
llvm-svn: 269054
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
This backend was supposed to generate C++ code which will re-construct
the LLVM IR passed as input. This seems to me to have very marginal
usefulness in the first place.
However, the code has never been updated to use IRBuilder, which makes
its current value negative -- people who look at the output may be
steered to use the *wrong* C++ APIs to construct IR.
Furthermore, it's generated code that doesn't compile since at least
2013.
Differential Revision: http://reviews.llvm.org/D19942
llvm-svn: 268631
If a guard call being lowered by LowerGuardIntrinsics has the
`!make.implicit` metadata attached, then reattach the metadata to the
branch in the resulting expanded form of the intrinsic. This allows us
to implement null checks as guards and still get the benefit of implicit
null checks.
llvm-svn: 268148
Summary:
D19403 adds a new pragma for loop distribution. This change adds
support for the corresponding metadata that the pragma is translated to
by the FE.
As part of this I had to rethink the flag -enable-loop-distribute. My
goal was to be backward compatible with the existing behavior:
A1. pass is off by default from the optimization pipeline
unless -enable-loop-distribute is specified
A2. pass is on when invoked directly from opt (e.g. for unit-testing)
The new pragma/metadata overrides these defaults so the new behavior is:
B1. A1 + enable distribution for individual loop with the pragma/metadata
B2. A2 + disable distribution for individual loop with the pragma/metadata
The default value whether the pass is on or off comes from the initiator
of the pass. From the PassManagerBuilder the default is off, from opt
it's on.
I moved -enable-loop-distribute under the pass. If the flag is
specified it overrides the default from above.
Then the pragma/metadata can further modifies this per loop.
As a side-effect, we can now also use -enable-loop-distribute=0 from opt
to emulate the default from the optimization pipeline. So to be precise
this is the new behavior:
C1. pass is off by default from the optimization pipeline
unless -enable-loop-distribute or the pragma/metadata enables it
C2. pass is on when invoked directly from opt
unless -enable-loop-distribute=0 or the pragma/metadata disables it
Reviewers: hfinkel
Subscribers: joker.eph, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D19431
llvm-svn: 267672
Summary:
This tries to anchor down the concept of domains a bit better. I had
trouble initially relating this to anything. Also talking to David
Majnemer on IRC suggested that I wasn't the only one.
Reviewers: hfinkel
Subscribers: llvm-commits, majnemer
Differential Revision: http://reviews.llvm.org/D18799
llvm-svn: 267647
print-stack-trace.cc test failure of compiler-rt has been fixed by
r266869 (http://reviews.llvm.org/D19148), so reenable sibling call
optimization on ppc64
Reviewers: nemanjai kbarton
llvm-svn: 267527
I really thought we were doing this already, but we were not. Given this input:
void Test(int *res, int *c, int *d, int *p) {
for (int i = 0; i < 16; i++)
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
we did not vectorize the loop. Even with "assume_safety" the check that we
don't if-convert conditionally-executed loads (to protect against
data-dependent deferenceability) was not elided.
One subtlety: As implemented, it will still prefer to use a masked-load
instrinsic (given target support) over the speculated load. The choice here
seems architecture specific; the best option depends on how expensive the
masked load is compared to a regular load. Ideally, using the masked load still
reduces unnecessary memory traffic, and so should be preferred. If we'd rather
do it the other way, flipping the order of the checks is easy.
The LangRef is updated to make explicit that llvm.mem.parallel_loop_access also
implies that if conversion is okay.
Differential Revision: http://reviews.llvm.org/D19512
llvm-svn: 267514
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
This intrinsic takes two arguments, ``%ptr`` and ``%offset``. It loads
a 32-bit value from the address ``%ptr + %offset``, adds ``%ptr`` to that
value and returns it. The constant folder specifically recognizes the form of
this intrinsic and the constant initializers it may load from; if a loaded
constant initializer is known to have the form ``i32 trunc(x - %ptr)``,
the intrinsic call is folded to ``x``.
LLVM provides that the calculation of such a constant initializer will
not overflow at link time under the medium code model if ``x`` is an
``unnamed_addr`` function. However, it does not provide this guarantee for
a constant initializer folded into a function body. This intrinsic can be
used to avoid the possibility of overflows when loading from such a constant.
Differential Revision: http://reviews.llvm.org/D18367
llvm-svn: 267223
Summary:
LLVMAttribute has outlived its utility and is becoming a problem for C API users that what to use all the LLVM attributes. In order to help moving away from LLVMAttribute in a smooth manner, this diff introduce LLVMGetAttrKindIDInContext, which can be used instead of the enum values.
See D18749 for reference.
Reviewers: Wallbraker, whitequark, joker.eph, echristo, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19081
llvm-svn: 266842
Both AArch64 and ARM support llvm.<arch>.thread.pointer intrinsics that
just return the thread pointer. I have a pending patch that does the same
for SystemZ (D19054), and there are many more targets that could benefit
from one.
This patch merges the ARM and AArch64 intrinsics into a single target
independent one that will also be used by subsequent targets.
Differential Revision: http://reviews.llvm.org/D19098
llvm-svn: 266818
With this change, ideally IR pass can always generate llvm.stackguard
call to get the stack guard; but for now there are still IR form stack
guard customizations around (see getIRStackGuard()). Future SSP
customization should go through LOAD_STACK_GUARD.
There is a behavior change: stack guard values are not CSEed anymore,
since we should never reuse the value in case that it has been spilled (and
corrupted). See ssp-guard-spill.ll. This also cause the change of stack
size and codegen in X86 and AArch64 test cases.
Ideally we'd like to know if the guard created in llvm.stackprotector() gets
spilled or not. If the value is spilled, discard the value and reload
stack guard; otherwise reuse the value. This can be done by teaching
register allocator to know how to rematerialize LOAD_STACK_GUARD and
force a rematerialization (which seems hard), or check for spilling in
expandPostRAPseudo. It only makes sense when the stack guard is a global
variable, which requires more instructions to load. Anyway, this seems to go out
of the scope of the current patch.
llvm-svn: 266806
Summary:
The `"patchable-function"` attribute can be used by an LLVM client to
influence LLVM's code generation in ways that makes the generated code
easily patchable at runtime (for instance, to redirect control).
Right now only one patchability scheme is supported,
`"prologue-short-redirect"`, but this can be expanded in the future.
Reviewers: joker.eph, rnk, echristo, dberris
Subscribers: joker.eph, echristo, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19046
llvm-svn: 266715
Rather than relying on the structural equivalence of DICompositeType to
merge type definitions, use an explicit map on the LLVMContext that
LLParser and BitcodeReader consult when constructing new nodes.
Each non-forward-declaration DICompositeType with a non-empty
'identifier:' field is stored/loaded from the type map, and the first
definiton will "win".
This map is opt-in: clients that expect ODR types from different modules
to be merged must call LLVMContext::ensureDITypeMap.
- Clients that just happen to load more than one Module in the same
LLVMContext won't magically merge types.
- Clients (like LTO) that want to continue to merge types based on ODR
identifiers should opt-in immediately.
I have updated LTOCodeGenerator.cpp, the two "linking" spots in
gold-plugin.cpp, and llvm-link (unless -disable-debug-info-type-map) to
set this.
With this in place, it will be straightforward to remove the DITypeRef
concept (i.e., referencing types by their 'identifier:' string rather
than pointing at them directly).
llvm-svn: 266549
Merge members that are describing the same member of the same ODR type,
even if other bits differ. If the file or line differ, we don't care;
if anything else differs, it's an ODR violation (and we still don't
really care).
For DISubprogram declarations, this looks at the LinkageName and Scope.
For DW_TAG_member instances of DIDerivedType, this looks at the Name and
Scope. In both cases, we know that the Scope follows ODR rules if it
has a non-empty identifier.
llvm-svn: 266548
This text is also incorrect (much like r266540). It looks like I missed
updating some of what I moved from SourceLevelDebugging.rst in r232566.
llvm-svn: 266544
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
(Recommit of r266002, with r266011, r266016, and not accidentally
including an extra unused/uninitialized element in LibcallRoutineNames)
AtomicExpandPass can now lower atomic load, atomic store, atomicrmw, and
cmpxchg instructions to __atomic_* library calls, when the target
doesn't support atomics of a given size.
This is the first step towards moving all atomic lowering from clang
into llvm. When all is done, the behavior of __sync_* builtins,
__atomic_* builtins, and C11 atomics will be unified.
Previously LLVM would pass everything through to the ISelLowering
code. There, unsupported atomic instructions would turn into __sync_*
library calls. Because of that behavior, Clang currently avoids emitting
llvm IR atomic instructions when this would happen, and emits __atomic_*
library functions itself, in the frontend.
This change makes LLVM able to emit __atomic_* libcalls, and thus will
eventually allow clang to depend on LLVM to do the right thing.
It is advantageous to do the new lowering to atomic libcalls in
AtomicExpandPass, before ISel time, because it's important that all
atomic operations for a given size either lower to __atomic_*
libcalls (which may use locks), or native instructions which won't. No
mixing and matching.
At the moment, this code is enabled only for SPARC, as a
demonstration. The next commit will expand support to all of the other
targets.
Differential Revision: http://reviews.llvm.org/D18200
llvm-svn: 266115
This is a resubmittion of 263158 change.
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 266086
They broke the msan bot.
Original message:
Add __atomic_* lowering to AtomicExpandPass.
AtomicExpandPass can now lower atomic load, atomic store, atomicrmw,and
cmpxchg instructions to __atomic_* library calls, when the target
doesn't support atomics of a given size.
This is the first step towards moving all atomic lowering from clang
into llvm. When all is done, the behavior of __sync_* builtins,
__atomic_* builtins, and C11 atomics will be unified.
Previously LLVM would pass everything through to the ISelLowering
code. There, unsupported atomic instructions would turn into __sync_*
library calls. Because of that behavior, Clang currently avoids emitting
llvm IR atomic instructions when this would happen, and emits __atomic_*
library functions itself, in the frontend.
This change makes LLVM able to emit __atomic_* libcalls, and thus will
eventually allow clang to depend on LLVM to do the right thing.
It is advantageous to do the new lowering to atomic libcalls in
AtomicExpandPass, before ISel time, because it's important that all
atomic operations for a given size either lower to __atomic_*
libcalls (which may use locks), or native instructions which won't. No
mixing and matching.
At the moment, this code is enabled only for SPARC, as a
demonstration. The next commit will expand support to all of the other
targets.
Differential Revision: http://reviews.llvm.org/D18200
llvm-svn: 266062
`allocsize` is a function attribute that allows users to request that
LLVM treat arbitrary functions as allocation functions.
This patch makes LLVM accept the `allocsize` attribute, and makes
`@llvm.objectsize` recognize said attribute.
The review for this was split into two patches for ease of reviewing:
D18974 and D14933. As promised on the revisions, I'm landing both
patches as a single commit.
Differential Revision: http://reviews.llvm.org/D14933
llvm-svn: 266032
AtomicExpandPass can now lower atomic load, atomic store, atomicrmw, and
cmpxchg instructions to __atomic_* library calls, when the target
doesn't support atomics of a given size.
This is the first step towards moving all atomic lowering from clang
into llvm. When all is done, the behavior of __sync_* builtins,
__atomic_* builtins, and C11 atomics will be unified.
Previously LLVM would pass everything through to the ISelLowering
code. There, unsupported atomic instructions would turn into __sync_*
library calls. Because of that behavior, Clang currently avoids emitting
llvm IR atomic instructions when this would happen, and emits __atomic_*
library functions itself, in the frontend.
This change makes LLVM able to emit __atomic_* libcalls, and thus will
eventually allow clang to depend on LLVM to do the right thing.
It is advantageous to do the new lowering to atomic libcalls in
AtomicExpandPass, before ISel time, because it's important that all
atomic operations for a given size either lower to __atomic_*
libcalls (which may use locks), or native instructions which won't. No
mixing and matching.
At the moment, this code is enabled only for SPARC, as a
demonstration. The next commit will expand support to all of the other
targets.
Differential Revision: http://reviews.llvm.org/D18200
llvm-svn: 266002
This is a cleanup patch for SSP support in LLVM. There is no functional change.
llvm.stackprotectorcheck is not needed, because SelectionDAG isn't
actually lowering it in SelectBasicBlock; rather, it adds check code in
FinishBasicBlock, ignoring the position where the intrinsic is inserted
(See FindSplitPointForStackProtector()).
llvm-svn: 265851
A draft line added to release notes for PPC, to keep a record of changes.
This is just a draft and will be rewritten towards the end of release.
llvm-svn: 265694
This patch add support for GCC attribute((ifunc("resolver"))) for
targets that use ELF as object file format. In general ifunc is a
special kind of function alias with type @gnu_indirect_function. Patch
for Clang http://reviews.llvm.org/D15524
Differential Revision: http://reviews.llvm.org/D15525
llvm-svn: 265667
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
Summary:
Address space mapping is described in lib/Target/AMDGPU/AMDGPU.h in
Doxygen comments. This patch adds the description to user guide for
AMDGPU back-end.
Patch By: Vedran Miletić
Reviewers: tstellarAMD, arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17046
llvm-svn: 265500
Story time was nice a few years ago, but by now it's nice to state how things are, rather than explain the diff from ye olden atomic history. These were dark times.
llvm-svn: 265369
A ``swifterror`` attribute can be applied to a function parameter or an
AllocaInst.
This commit does not include any target-specific change. The target-specific
optimization will come as a follow-up patch.
Differential Revision: http://reviews.llvm.org/D18092
llvm-svn: 265189
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
Summary:
As discussed on llvm-dev[1].
This change adds the basic boilerplate code around having this intrinsic
in LLVM:
- Changes in Intrinsics.td, and the IR Verifier
- A lowering pass to lower @llvm.experimental.guard to normal
control flow
- Inliner support
[1]: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095523.html
Reviewers: reames, atrick, chandlerc, rnk, JosephTremoulet, echristo
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18527
llvm-svn: 264976
Summary:
Currently it's a module pass. Make it a function pass so that we can
move it to PassManagerBuilder's EP_EarlyAsPossible extension point,
which only accepts function passes.
Reviewers: rnk
Subscribers: tra, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18615
llvm-svn: 264919
1) Skylake and KNL support for X86
2) masked intrinsics load/store/gather/scatter
Differential Revision: http://reviews.llvm.org/D18353
llvm-svn: 264703
r260042 removed a footnote referring to autoconf, but it left
around one item still referring to that footnote (libtool), and
it didn't renumber the later footnote reference.
llvm-svn: 264663
This keeps the naming consistent with Chapters 6-8, where Error was renamed to
LogError in r264426 to avoid clashes with the new Error class in libSupport.
llvm-svn: 264427
Summary:
Only adds support for "naked" calls to llvm.experimental.deoptimize.
Support for round-tripping through RewriteStatepointsForGC will come
as a separate patch (should be simpler than this one).
Reviewers: reames
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18429
llvm-svn: 264329
This is all horribly outdated, and is mostly about the autoconf build
system that doesn't even exist anymore. These questions aren't
frequent, and these answers aren't useful.
llvm-svn: 264141
In retrospect, it seems "obvious" that the sense of the return code is
the same as if it crashed on "interesting" inputs. But that didn't stop
me from spending more time than I care to admit verifying this.
llvm-svn: 264119
* Renamed to be camel case, consistent with other docs.
* Fixed non-ascii characters (this is what I get for writing docs on an iPad).
llvm-svn: 263840
This patch introduces the Error classs for lightweight, structured,
recoverable error handling. It includes utilities for creating, manipulating
and handling errors. The scheme is similar to exceptions, in that errors are
described with user-defined types. Unlike exceptions however, errors are
represented as ordinary return types in the API (similar to the way
std::error_code is used).
For usage notes see the LLVM programmer's manual, and the Error.h header.
Usage examples can be found in unittests/Support/ErrorTest.cpp.
Many thanks to David Blaikie, Mehdi Amini, Kevin Enderby and others on the
llvm-dev and llvm-commits lists for lots of discussion and review.
llvm-svn: 263609
Summary:
This intrinsic, together with deoptimization operand bundles, allow
frontends to express transfer of control and frame-local state from
one (typically more specialized, hence faster) version of a function
into another (typically more generic, hence slower) version.
In languages with a fully integrated managed runtime this intrinsic can
be used to implement "uncommon trap" like functionality. In unmanaged
languages like C and C++, this intrinsic can be used to represent the
slow paths of specialized functions.
Note: this change does not address how `@llvm.experimental_deoptimize`
is lowered. That will be done in a later change.
Reviewers: chandlerc, rnk, atrick, reames
Subscribers: llvm-commits, kmod, mjacob, maksfb, mcrosier, JosephTremoulet
Differential Revision: http://reviews.llvm.org/D17732
llvm-svn: 263281
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 263158
Summary:
Rename the section embeds bitcode from ".llvmbc,.llvmbc" to "__LLVM,__bitcode".
The new name matches MachO section naming convention.
Reviewers: rafael, pcc
Subscribers: davide, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D17388
llvm-svn: 262245
Today, we do not allow cmpxchg operations with pointer arguments. We require the frontend to insert ptrtoint casts and do the cmpxchg in integers. While correct, this is problematic from a couple of perspectives:
1) It makes the IR harder to analyse (for instance, it make capture tracking overly conservative)
2) It pushes work onto the frontend authors for no real gain
This patch implements the simplest form of IR support. As we did with floating point loads and stores, we teach AtomicExpand to convert back to the old representation. This prevents us needing to change all backends in a single lock step change. Over time, we can migrate each backend to natively selecting the pointer type. In the meantime, we get the advantages of a cleaner IR representation without waiting for the backend changes.
Differential Revision: http://reviews.llvm.org/D17413
llvm-svn: 261281
Summary:
As previously written, only functions could be convergent. But calls
need to have a notion of convergence as well.
To see why this is important, consider an indirect call. We may or may
not want to disable optimizations around it and behave as though we're
calling a convergent function -- it depends on the semantics of the
language we're compiling. Thus the need for this attr on the call.
Reviewers: jingyue, joker.eph
Subscribers: llvm-commits, tra, jhen, arsenm, chandlerc, hfinkel, resistor
Differential Revision: http://reviews.llvm.org/D17314
llvm-svn: 261111
Summary: The name is confusing as it matche another method on the module.
Reviewers: joker.eph, Wallbraker, echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17283
llvm-svn: 260920
It seems the ARMv8 instruction set overview is no longer provided by ARM, so
I've removed it. Since most of the other documents were the same I unified the
two sections.
llvm-svn: 260329
Summary:
Be more explicit about what 'convergent' means, and indicate that the
compiler may remove the attribute from a function if it can prove that
the function doesn't in fact execute any convergent ops.
Reviewers: resistor, jingyue, joker.eph
Subscribers: hfinkel, chandlerc, arsenm, jhen, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17012
llvm-svn: 260318
Mehdi suggested in a review of r259766 that it's also useful to easily
set the type of LTO. Augment the cmake variable to support that.
llvm-svn: 260143
This matches GCC and MSVC's behaviour, and saves on code size.
We were already not extending i1 return values on x86_64 after r127766. This
takes that patch further by applying it to x86 target as well, and also for i8
and i16.
The ABI docs have been unclear about the required behaviour here. The new i386
psABI [1] clearly states (Table 2.4, page 14) that i1, i8, and i16 return
vales do not need to be extended beyond 8 bits. The x86_64 ABI doc is being
updated to say the same [2].
Differential Revision: http://reviews.llvm.org/D16907
[1]. https://01.org/sites/default/files/file_attach/intel386-psabi-1.0.pdf
[2]. https://groups.google.com/d/msg/x86-64-abi/E8O33onbnGQ/_RFWw_ixDQAJ
llvm-svn: 260133
This reduces sizes of instrumented object files, final binaries,
process images, and raw profile data.
The format of the indexed profile data remain the same.
Differential Revision: http://reviews.llvm.org/D16388
llvm-svn: 260117
Watching new contributors trying to build LLVM on Windows, one of the
very common failure modes was getting a version of Visual Studio
that did not have a C++ compiler for CMake to put up. Trying to create
a C++ project in Visual Studio will cause Visual Studio to go and
download the C++ tools.
llvm-svn: 260049
This just incrementally improves what was already there; it's questionable whether this content belongs in the getting started guide at all.
Patch by Ben Nathanson w/permission w/minor edtis by me.
llvm-svn: 260040
The mentioned environment variable doesn't appear to have any use in the LLVM repository. If it is still relevant for clang, we can consider adding it to the clang getting started page.
Patch inspired by documentation work by Ben Nathanson at the LLVM Bloomberg sprint.
llvm-svn: 260037
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
This is the right location for platform-specific files.
On some distributions (e. g. Exherbo), a package can be installed for several
architectures in parallel, but the architecture-independent files are shared.
Therefore, we must not install architecture-dependent files (like the CMake
config and export files) to share/.
llvm-svn: 259821
1. Mentioned that CUDA support works best with trunk.
2. Simplified the example by removing its dependency on the CUDA samples.
3. Explain the --cuda-gpu-arch flag.
llvm-svn: 259307
Add an option to llvm-profdata merge for writing out sparse indexed
profiles. These profiles omit InstrProfRecords for functions which are
never executed.
Differential Revision: http://reviews.llvm.org/D16727
llvm-svn: 259258
I broke the documentation builds when I deleted the MakefileGuide as part of the autoconf removal. At some point I'll need to do a more in-depth pass updating the documentation to remove references to the old build system.
llvm-svn: 258873
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Adds a way to inspect SHT_GROUP sections in ELF objects.
Displays signature, member sections of these sections.
Differential revision: http://reviews.llvm.org/D16555
llvm-svn: 258845
Summary:
This adds a new kind of operand bundle to LLVM denoted by the
`"gc-transition"` tag. Inputs to `"gc-transition"` operand bundle are
lowered into the "transition args" section of `gc.statepoint` by
`RewriteStatepointsForGC`.
This removes the last bit of functionality that was unsupported in the
deopt bundle based code path in `RewriteStatepointsForGC`.
Reviewers: pgavlin, JosephTremoulet, reames
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16342
llvm-svn: 258338
Summary:
Document the LLVM_BUILD_LLVM_DYLIB and LLVM_LINK_LLVM_DYLIB
CMake options, move BUILD_SHARED_LIBS out of frequently-used,
and add a note/warning to BUILD_SHARED_LIBS.
Reviewers: beanz, delcypher, mjacob
Subscribers: mjacob, llvm-commits
Differential Revision: http://reviews.llvm.org/D16208
llvm-svn: 257864
The previous text was hard to understand even for me and I wrote it. Hopefully the new structure makes it a bit more clear what's going on. If anyone has word smithing suggestion or clarification questions, please let me know.
llvm-svn: 257847
Phabricator to trunk.
The previous documentation had a few issues:
* It did not make it explicit that code could be
committed without using the Arcanist tool and how this should be done.
* There was also an implicit assumption on using Subversion
rather than git-svn in the example using Arcanist. The documentation now
explicitly mentions both cases and details how to commit to trunk in
each case.
Reviewers: klimek, probinson
Subscribers: probinson, nwilson, reames, llvm-commits
Differential Revision: http://reviews.llvm.org/D15801
llvm-svn: 257764
This means that the DEBUG_TYPE cannot take a comma anymore. All existing passes
conform to this rule.
Differential Revision: http://reviews.llvm.org/D15645
llvm-svn: 257466
Summary:
Funclet-based EH personalities/tables likely can't handle these, and they
can't be generated at source, so make them officially illegal in IR as
well.
Reviewers: andrew.w.kaylor, rnk, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15963
llvm-svn: 257274
Summary:
A funclet EH pad may be exited by an unwind edge, which may be a
cleanupret exiting its cleanuppad, an invoke exiting a funclet, or an
unwind out of a nested funclet transitively exiting its parent. Funclet
EH personalities require all such exceptional exits from a given funclet to
have the same unwind destination, and EH preparation / state numbering /
table generation implicitly depends on this. Formalize it as a rule of
the IR in the LangRef and verifier.
Reviewers: rnk, majnemer, andrew.w.kaylor
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15962
llvm-svn: 257273
Summary:
Funclet EH personalities require a tree-like nesting among funclets
(enforced by the ParentPad linkage in the IR), and also require that
unwind edges conform to certain rules with respect to the tree:
- An unwind edge may exit 0 or more ancestor pads
- An unwind edge must enter exactly one EH pad, which must be distinct
from any exited pads
- A cleanupret's edge must exit its cleanuppad
Describe these rules in the LangRef, and enforce them in the verifier.
Reviewers: rnk, majnemer, andrew.w.kaylor
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15961
llvm-svn: 257272
CMake v3.2 or newer is necessary to get interactive output when running
Lit via Ninja. Otherwise Ninja will buffer Lit's output, which makes
for a crummy experience -- you can't tell if your tests are hung!
Patch by Justin Lebar!
llvm-svn: 256791
Summary:
There are a number of files in the tree which have been accidentally checked in with DOS line endings. Convert these to native line endings.
There are also a few files which have DOS line endings on purpose, and I have set the svn:eol-style property to 'CRLF' on those.
Reviewers: joerg, aaron.ballman
Subscribers: aaron.ballman, sanjoy, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D15848
llvm-svn: 256707
Summary: This patch changes gc.statepoint intrinsic's return type to token type instead of i32 type. Using token types could prevent LLVM to merge different gc.statepoint nodes into PHI nodes and cause further problems with gc relocations. The patch also changes the way on how gc.relocate and gc.result look for their corresponding gc.statepoint on unwind path. The current implementation uses the selector value extracted from a { i8*, i32 } landingpad as a hook to find the gc.statepoint, while the patch directly uses a token type landingpad (http://reviews.llvm.org/D15405) to find the gc.statepoint.
Reviewers: sanjoy, JosephTremoulet, pgavlin, igor-laevsky, mjacob
Subscribers: reames, mjacob, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15662
llvm-svn: 256443
It resolves clang selfhosting with std::once() for Cygwin.
FIXME: It may be EmulatedTLS-generic also for X86-Android.
FIXME: Pass EmulatedTLS to LLVM CodeGen from Clang with -femulated-tls.
llvm-svn: 256134
This deprecates:
* LLVMParseBitcode
* LLVMParseBitcodeInContext
* LLVMGetBitcodeModuleInContext
* LLVMGetBitcodeModule
They are replaced with the functions with a 2 suffix which do not record
a diagnostic.
llvm-svn: 256065
Type specific declarations have been moved to Type.h and error handling
routines have been moved to ErrorHandling.h. Both are included in Core.h
so nothing should change for projects directly including the headers,
but transitive dependencies may be affected.
llvm-svn: 255965
Summary:
I didn't realize that we already allowed atomic load/store of pointers,
it was added in 2012 by r162146. This patch updates the documentation
and tightens the verifier by using DataLayout to make sure that the
stored size is byte-sized and power-of-two. DataLayout is also used for
integers, and while I'm here I updated the corresponding code for
cmpxchg and rmw.
See the following discussion for context and upcoming changes to
add floating-point and vector atomics:
https://groups.google.com/forum/#!topic/llvm-dev/Nh0P_E3CRoo/discussion
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15512
llvm-svn: 255931
Summary:
This patch introduces two new function attributes
InaccessibleMemOnly: This attribute indicates that the function may only access memory that is not accessible by the program/IR being compiled. This is a weaker form of ReadNone.
inaccessibleMemOrArgMemOnly: This attribute indicates that the function may only access memory that is either not accessible by the program/IR being compiled, or is pointed to by its pointer arguments. This is a weaker form of ArgMemOnly
Test cases have been updated. This revision uses this (d001932f3a) as reference.
Reviewers: jmolloy, hfinkel
Subscribers: reames, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D15499
llvm-svn: 255778
This patch allows atomic loads and stores of floating point to be specified in the IR and adds an adapter to allow them to be lowered via existing backend support for bitcast-to-equivalent-integer idiom.
Previously, the only way to specify a atomic float operation was to bitcast the pointer to a i32, load the value as an i32, then bitcast to a float. At it's most basic, this patch simply moves this expansion step to the point we start lowering to the backend.
This patch does not add canonicalization rules to convert the bitcast idioms to the appropriate atomic loads. I plan to do that in the future, but for now, let's simply add the support. I'd like to get instruction selection working through at least one backend (x86-64) without the bitcast conversion before canonicalizing into this form.
Similarly, I haven't yet added the target hooks to opt out of the lowering step I added to AtomicExpand. I figured it would more sense to add those once at least one backend (x86) was ready to actually opt out.
As you can see from the included tests, the generated code quality is not great. I plan on submitting some patches to fix this, but help from others along that line would be very welcome. I'm not super familiar with the backend and my ramp up time may be material.
Differential Revision: http://reviews.llvm.org/D15471
llvm-svn: 255737
SimplifyCFG allows tail merging with code which terminates in
unreachable which, in turn, makes it possible for an invoke to end up in
a funclet which it was not originally part of.
Using operand bundles on invokes allows us to determine whether or not
an invoke was part of a funclet in the source program.
Furthermore, it allows us to unambiguously answer questions about the
legality of inlining into call sites which the personality may have
trouble with.
Differential Revision: http://reviews.llvm.org/D15517
llvm-svn: 255674
Summary:
This change adds support for specifying a weight when merging profile data with the llvm-profdata tool.
Weights are specified by using the --weighted-input=<weight>,<filename> option. Input files not specified
with this option (normal positional list after options) are given a default weight of 1.
Adding support for arbitrary weighting of input profile data allows for relative importance to be placed on the
input data from multiple training runs.
Both sampled and instrumented profiles are supported.
Reviewers: davidxl, dnovillo, bogner, silvas
Subscribers: silvas, davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D15306
llvm-svn: 255659
This patch adds optional fast-math-flags (the same that apply to fmul/fadd/fsub/fdiv/frem/fcmp)
to call instructions in IR. Follow-up patches would use these flags in LibCallSimplifier, add
support to clang, and extend FMF to the DAG for calls.
Motivating example:
%y = fmul fast float %x, %x
%z = tail call float @sqrtf(float %y)
We'd like to be able to optimize sqrt(x*x) into fabs(x). We do this today using a function-wide
attribute for unsafe-math, but we really want to trigger on the instructions themselves:
%z = tail call fast float @sqrtf(float %y)
because in an LTO build it's possible that calls with fast semantics have been inlined into a
function with non-fast semantics.
The code changes and tests are based on the recent commits that added "notail":
http://reviews.llvm.org/rL252368
and added FMF to fcmp:
http://reviews.llvm.org/rL241901
Differential Revision: http://reviews.llvm.org/D14707
llvm-svn: 255555
It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
llvm-svn: 255522
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
After much discussion, ending here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151123/315620.html
it has been decided that, instead of having the vectorizer directly generate
special absdiff and horizontal-add intrinsics, we'll recognize the relevant
reduction patterns during CodeGen. Accordingly, these intrinsics are not needed
(the operations they represent can be pattern matched, as is already done in
some backends). Thus, we're backing these out in favor of the current
development work.
r248483 - Codegen: Fix llvm.*absdiff semantic.
r242546 - [ARM] Use [SU]ABSDIFF nodes instead of intrinsics for VABD/VABA
r242545 - [AArch64] Use [SU]ABSDIFF nodes instead of intrinsics for ABD/ABA
r242409 - [Codegen] Add intrinsics 'absdiff' and corresponding SDNodes for absolute difference operation
llvm-svn: 255387
Introduced DIMacro and DIMacroFile debug info metadata in the LLVM IR to support macros.
Differential Revision: http://reviews.llvm.org/D14687
llvm-svn: 255245