variables prior to running your binary. Zero filled sections now get
section data correctly filled with zeroes when Target::ReadMemory
reads from the object file section data.
Added new option groups and option values for file lists. I still need
to hook up all of the options to "target variable" to allow more complete
introspection by file and shlib.
Added the ability for ValueObjectVariable objects to be created with
only the target as the execution context. This allows them to be read
from the object files through Target::ReadMemory(...).
Added a "virtual Module * GetModule()" function to the ValueObject
class. By default it will look to the parent variable object and
return its module. The module is needed when we have global variables
that have file addresses (virtual addresses that are specific to
module object files) and in turn allows global variables to be displayed
prior to running.
Removed all of the unused proxy object support that bit rotted in
lldb_private::Value.
Replaced a lot of places that used "FileSpec::Compare (lhs, rhs) == 0" code
with the more efficient "FileSpec::Equal (lhs, rhs)".
Improved logging in GDB remote plug-in.
llvm-svn: 134579
implements three commands:
type summary add <format> <typename1> [<typename2> ...]
type summary delete <typename1> [<typename2> ...]
type summary list [<typename1> [<typename2>] ...]
type summary clear
This allows you to specify the default format that will be used to display
summaries for variables, shown when you use "frame variable" or "expression", or the SBValue classes.
Examples:
type summary add "x = ${var.x}" Point
type summary list
type summary add --one-liner SimpleType
llvm-svn: 134108
respective ABI plugins as they were plug-ins that supplied ABI specfic info.
Also hookep up the UnwindAssemblyInstEmulation so that it can generate the
unwind plans for ARM.
Changed the way ABI plug-ins are handed out when you get an instance from
the plug-in manager. They used to return pointers that would be mananged
individually by each client that requested them, but now they are handed out
as shared pointers since there is no state in the ABI objects, they can be
shared.
llvm-svn: 131193
are defined as enumerations. Current bits include:
eEmulateInstructionOptionAutoAdvancePC
eEmulateInstructionOptionIgnoreConditions
Modified the EmulateInstruction class to have a few more pure virtuals that
can help clients understand how many instructions the emulator can handle:
virtual bool
SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0;
Where instruction types are defined as:
//------------------------------------------------------------------
/// Instruction types
//------------------------------------------------------------------
typedef enum InstructionType
{
eInstructionTypeAny, // Support for any instructions at all (at least one)
eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp
eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer
eInstructionTypeAll // All instructions of any kind
} InstructionType;
This allows use to tell what an emulator can do and also allows us to request
these abilities when we are finding the plug-in interface.
Added the ability for an EmulateInstruction class to get the register names
for any registers that are part of the emulation. This helps with being able
to dump and log effectively.
The UnwindAssembly class now stores the architecture it was created with in
case it is needed later in the unwinding process.
Added a function that can tell us DWARF register names for ARM that goes
along with the source/Utility/ARM_DWARF_Registers.h file:
source/Utility/ARM_DWARF_Registers.c
Took some of plug-ins out of the lldb_private namespace.
llvm-svn: 130189
lldb_private::OptionGroup
lldb_private::OptionGroupOptions
OptionGroup lets you define a class that encapsulates settings that you want
to reuse in multiple commands. It contains only the option definitions and the
ability to set the option values, but it doesn't directly interface with the
lldb_private::Options class that is the front end to all of the CommandObject
option parsing. For that the OptionGroupOptions class can be used. It aggregates
one or more OptionGroup objects and directs the option setting to the
appropriate OptionGroup class. For an example of this, take a look at the
CommandObjectFile and how it uses its "m_option_group" object shown below
to be able to set values in both the FileOptionGroup and PlatformOptionGroup
classes. The members used in CommandObjectFile are:
OptionGroupOptions m_option_group;
FileOptionGroup m_file_options;
PlatformOptionGroup m_platform_options;
Then in the constructor for CommandObjectFile you can combine the option
settings. The code below shows a simplified version of the constructor:
CommandObjectFile::CommandObjectFile(CommandInterpreter &interpreter) :
CommandObject (...),
m_option_group (interpreter),
m_file_options (),
m_platform_options(true)
{
m_option_group.Append (&m_file_options);
m_option_group.Append (&m_platform_options);
m_option_group.Finalize();
}
We append the m_file_options and then the m_platform_options and then tell
the option group the finalize the results. This allows the m_option_group to
become the organizer of our prefs and after option parsing we end up with
valid preference settings in both the m_file_options and m_platform_options
objects. This also allows any other commands to use the FileOptionGroup and
PlatformOptionGroup classes to implement options for their commands.
Renamed:
virtual void Options::ResetOptionValues();
to:
virtual void Options::OptionParsingStarting();
And implemented a new callback named:
virtual Error Options::OptionParsingFinished();
This allows Options subclasses to verify that the options all go together
after all of the options have been specified and gives the chance for the
command object to return an error. It also gives a chance to take all of the
option values and produce or initialize objects after all options have
completed parsing.
Modfied:
virtual Error
SetOptionValue (int option_idx, const char *option_arg) = 0;
to be:
virtual Error
SetOptionValue (uint32_t option_idx, const char *option_arg) = 0;
(option_idx is now unsigned).
llvm-svn: 129415
class now implements the Host functionality for a lot of things that make
sense by default so that subclasses can check:
int
PlatformSubclass::Foo ()
{
if (IsHost())
return Platform::Foo (); // Let the platform base class do the host specific stuff
// Platform subclass specific code...
int result = ...
return result;
}
Added new functions to the platform:
virtual const char *Platform::GetUserName (uint32_t uid);
virtual const char *Platform::GetGroupName (uint32_t gid);
The user and group names are cached locally so that remote platforms can avoid
sending packets multiple times to resolve this information.
Added the parent process ID to the ProcessInfo class.
Added a new ProcessInfoMatch class which helps us to match processes up
and changed the Host layer over to using this new class. The new class allows
us to search for processs:
1 - by name (equal to, starts with, ends with, contains, and regex)
2 - by pid
3 - And further check for parent pid == value, uid == value, gid == value,
euid == value, egid == value, arch == value, parent == value.
This is all hookup up to the "platform process list" command which required
adding dumping routines to dump process information. If the Host class
implements the process lookup routines, you can now lists processes on
your local machine:
machine1.foo.com % lldb
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode
92742 92710 username usergroup username usergroup i386-apple-darwin debugserver
This of course also works remotely with the lldb-platform:
machine1.foo.com % lldb-platform --listen 1234
machine2.foo.com % lldb
(lldb) platform create remote-macosx
Platform: remote-macosx
Connected: no
(lldb) platform connect connect://localhost:1444
Platform: remote-macosx
Triple: x86_64-apple-darwin
OS Version: 10.6.7 (10J869)
Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386
Hostname: machine1.foo.com
Connected: yes
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation
99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
The lldb-platform implements everything with the Host:: layer, so this should
"just work" for linux. I will probably be adding more stuff to the Host layer
for launching processes and attaching to processes so that this support should
eventually just work as well.
Modified the target to be able to be created with an architecture that differs
from the main executable. This is needed for iOS debugging since we can have
an "armv6" binary which can run on an "armv7" machine, so we want to be able
to do:
% lldb
(lldb) platform create remote-ios
(lldb) file --arch armv7 a.out
Where "a.out" is an armv6 executable. The platform then can correctly decide
to open all "armv7" images for all dependent shared libraries.
Modified the disassembly to show the current PC value. Example output:
(lldb) disassemble --frame
a.out`main:
0x1eb7: pushl %ebp
0x1eb8: movl %esp, %ebp
0x1eba: pushl %ebx
0x1ebb: subl $20, %esp
0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18
0x1ec3: popl %ebx
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
0x1edb: leal 213(%ebx), %eax
0x1ee1: movl %eax, (%esp)
0x1ee4: calll 0x1f1e ; puts
0x1ee9: calll 0x1f0c ; getchar
0x1eee: movl $20, (%esp)
0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6
0x1efa: movl $12, %eax
0x1eff: addl $20, %esp
0x1f02: popl %ebx
0x1f03: leave
0x1f04: ret
This can be handy when dealing with the new --line options that was recently
added:
(lldb) disassemble --line
a.out`main + 13 at test.c:19
18 {
-> 19 printf("Process: %i\n\n", getpid());
20 puts("Press any key to continue..."); getchar();
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
Modified the ModuleList to have a lookup based solely on a UUID. Since the
UUID is typically the MD5 checksum of a binary image, there is no need
to give the path and architecture when searching for a pre-existing
image in an image list.
Now that we support remote debugging a bit better, our lldb_private::Module
needs to be able to track what the original path for file was as the platform
knows it, as well as where the file is locally. The module has the two
following functions to retrieve both paths:
const FileSpec &Module::GetFileSpec () const;
const FileSpec &Module::GetPlatformFileSpec () const;
llvm-svn: 128563
plugin by name on the command line for when there is more than one disassembler
plugin.
Taught the Opcode class to dump itself so that "disassembler -b" will dump
the bytes correctly for each opcode type. Modified all places that were passing
the opcode bytes buffer in so that the bytes could be displayed to just pass
in a bool that indicates if we should dump the opcode bytes since the opcode
now lives inside llvm_private::Instruction.
llvm-svn: 128290
an interface to a local or remote debugging platform. By default each host OS
that supports LLDB should be registering a "default" platform that will be
used unless a new platform is selected. Platforms are responsible for things
such as:
- getting process information by name or by processs ID
- finding platform files. This is useful for remote debugging where there is
an SDK with files that might already or need to be cached for debug access.
- getting a list of platform supported architectures in the exact order they
should be selected. This helps the native x86 platform on MacOSX select the
correct x86_64/i386 slice from universal binaries.
- Connect to remote platforms for remote debugging
- Resolving an executable including finding an executable inside platform
specific bundles (macosx uses .app bundles that contain files) and also
selecting the appropriate slice of universal files for a given platform.
So by default there is always a local platform, but remote platforms can be
connected to. I will soon be adding a new "platform" command that will support
the following commands:
(lldb) platform connect --name machine1 macosx connect://host:port
Connected to "machine1" platform.
(lldb) platform disconnect macosx
This allows LLDB to be well setup to do remote debugging and also once
connected process listing and finding for things like:
(lldb) process attach --name x<TAB>
The currently selected platform plug-in can now auto complete any available
processes that start with "x". The responsibilities for the platform plug-in
will soon grow and expand.
llvm-svn: 127286
of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up
doing was:
- Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics
the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple
to give us the machine type from llvm::Triple::ArchType.
- There is a new ArchSpec::Core definition which further qualifies the CPU
core we are dealing with into a single enumeration. If you need support for
a new Core and want to debug it in LLDB, it must be added to this list. In
the future we can allow for dynamic core registration, but for now it is
hard coded.
- The ArchSpec can now be initialized with a llvm::Triple or with a C string
that represents the triple (it can just be an arch still like "i386").
- The ArchSpec can still initialize itself with a architecture type -- mach-o
with cpu type and subtype, or ELF with e_machine + e_flags -- and this will
then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core.
The mach-o cpu type and subtype can be accessed using the getter functions:
uint32_t
ArchSpec::GetMachOCPUType () const;
uint32_t
ArchSpec::GetMachOCPUSubType () const;
But these functions are just converting out internal llvm::Triple::ArchSpec
+ ArchSpec::Core back into mach-o. Same goes for ELF.
All code has been updated to deal with the changes.
This should abstract us until later when the llvm::TargetSpec stuff gets
finalized and we can then adopt it.
llvm-svn: 126278
a Stream, and then added GetOutputData & GetErrorData to get the accumulated data.
- Added a StreamTee that will tee output to two provided lldb::StreamSP's.
- Made the CommandObjectReturn use this so you can Tee the results immediately to
the debuggers output file, as well as saving up the results to return when the command
is done executing.
- HandleCommands now uses this so that if you have a set of commands that continue the target
you will see the commands come out as they are processed.
- The Driver now uses this to output the command results as you go, which makes the interface
more reactive seeming.
llvm-svn: 126015
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602