perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
LocalRewriter.
This is a bit of a hack that adds an implicit use operand to model the
read-modify-write nature of a partial redef. Uses and defs are rewritten in
separate passes, and a single operand would never be processed twice.
<rdar://problem/8518892>
llvm-svn: 116210
functions: computeRemainder and rewrite.
When the remainder breaks up into multiple components, remember to rewrite those
uses as well.
llvm-svn: 116121
Such a check does not make any sense in presense of inlining and other compiler-dependent stuff.
This should fix bunch of warnings on mingw32.
llvm-svn: 116113
implicit. e.g.
%D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
%Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
The real definition indices are 0,1.
llvm-svn: 116080
connected components. These components should be allocated different virtual
registers because there is no reason for them to be allocated together.
Add the ConnectedVNInfoEqClasses class to calculate the connected components,
and move values to new LiveIntervals.
Use it from SplitKit::rewrite by creating new virtual registers for the
components.
llvm-svn: 116006
This function is intended to be used when inserting a machine instruction that
trivially restricts the legal registers, like LEA requiring a GR32_NOSP
argument.
llvm-svn: 115875
allow target to correctly compute latency for cases where static scheduling
itineraries isn't sufficient. e.g. variable_ops instructions such as
ARM::ldm.
This also allows target without scheduling itineraries to compute operand
latencies. e.g. X86 can return (approximated) latencies for high latency
instructions such as division.
- Compute operand latencies for those defined by load multiple instructions,
e.g. ldm and those used by store multiple instructions, e.g. stm.
llvm-svn: 115755
never kept after splitting.
Keeping the original interval made sense when the split region doesn't modify
the register, and the original is spilled. We can get the same effect by
detecting reloaded values when spilling around copies.
llvm-svn: 115695
Insert copy after defining instruction.
Fix LiveIntervalMap::extendTo to properly handle live segments starting before
the current basic block.
Make sure the open live range is extended to the inserted copy's use slot.
llvm-svn: 115665
having to do a double cast (uint64_t --> double --> float). This is based on the algorithm from compiler_rt's __floatundisf
for X86-64.
llvm-svn: 115634
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and i32 %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
Make sure it restores local variable N1, which corresponds to the condition operand if it fails to match.
This apparently breaks TCE but since that backend isn't in the tree I don't have a test for it.
llvm-svn: 115571
scheduling change in svn 115121. The CriticalAntiDepBreaker had bad
liveness information. It was calculating the KillIndices for one scheduling
region in a basic block, rescheduling that region so the KillIndices were
no longer valid, and then using those wrong KillIndices to make decisions
for the next scheduling region. I've not been able to reduce a small
testcase for this. Radar 8502534.
llvm-svn: 115400
LiveInterval::MergeValueNumberInto instead of trying to extend LiveRanges and
getting it wrong.
This fixed PR8249 where a valno with a multi-segment live range was defined by
an identity copy created by RemoveCopyByCommutingDef. Some of the live
segments disappeared.
llvm-svn: 115385