This will likely introduce catastrophic performance regressions on
older subtargets, but should be correct. A follow up change will
remove the old fp32-denormals subtarget features, and switch to using
the new denormal-fp-math/denormal-fp-math-f32 attributes. Frontends
should be making sure to add the denormal-fp-math-f32 attribute when
appropriate to avoid performance regressions.
Add the scratch wave offset to the scratch buffer descriptor (SRSrc) in
the entry function prologue. This allows us to removes the scratch wave
offset register from the calling convention ABI.
As part of this change, allow the use of an inline constant zero for the
SOffset of MUBUF instructions accessing the stack in entry functions
when a frame pointer is not requested/required. Entry functions with
calls still need to set up the calling convention ABI stack pointer
register, and reference it in order to address arguments of called
functions. The ABI stack pointer register remains unswizzled, but is now
wave-relative instead of queue-relative.
Non-entry functions also use an inline constant zero SOffset for
wave-relative scratch access, but continue to use the stack and frame
pointers as before. When the stack or frame pointer is converted to a
swizzled offset it is now scaled directly, as the scratch wave offset no
longer needs to be subtracted first.
Update llvm/docs/AMDGPUUsage.rst to reflect these changes to the calling
convention.
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75138
Summary:
Some tests have been hand edited without removing the
update_llc_test_checks header, some have slightly outdated CHECK lines
which still pass, and some have additional comments which
update_llc_test_checks pushes towards the function body.
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69402
This is something of a workaround, and the state of stack realignment
controls is kind of a mess. Ideally, we would be able to specify the
stack is infinitely aligned on entry to a kernel.
TargetFrameLowering provides multiple controls which apply at
different points. The StackRealignable field is used during
SelectionDAG, and for some reason distinct from this
hook. StackAlignment is a single field not dependent on the
function. It would probably be better to make that dependent on the
calling convention, and the maximum value for kernels.
Currently this doesn't really change anything, since the frame
lowering mostly does its own thing. This helps avoid regressions in a
future change which will rely more heavily on hasFP.
llvm-svn: 362447