Use 0 for the invalid buffer instead of -1/~0 and switch to unsigned
representation to enable more idiomatic usage.
Also introduce a trivial SourceMgr::getMainFileID() instead of hard-coding 0/1
to identify the main file.
llvm-svn: 212398
A GEP of a non-weak global variable will not be equivalent to another
non-weak global variable or a GEP of such a variable.
Differential Revision: http://reviews.llvm.org/D4238
llvm-svn: 212360
The regular end of the bitcode parsing is in the BitstreamEntry::EndBlock
case.
Should fix the LTO bootstrap on OS X (this function is only used by ld64).
llvm-svn: 212357
This reverts commit r212342.
We can get a StringRef into the current Record, but not one in the bitcode
itself since the string is compressed in it.
llvm-svn: 212356
These are the llvm.* globals and functions.
I don't think it is possible to test this directly since llvm-lto is not
a full linker and will not report duplicated symbols, but this fixes
bootstrap with gold and lto enabled.
llvm-svn: 212354
It is not clear if llvm.global_ctors should or should not be in llvm.metadata,
but in practice it is not and we need to ignore it for LTO.
llvm-svn: 212351
Add MSBuiltin which is similar in vein to GCCBuiltin. This allows for adding
intrinsics for Microsoft compatibility to individual instructions. This is
needed to permit the creation of ARM specific MSVC extensions.
This is not currently in use, and requires an associated change in clang to
enable use of the intrinsics defined by this new class. This merely sets the
LLVM portion of the infrastructure in place to permit the use of this
functionality. A separate set of changes will enable the new intrinsics.
llvm-svn: 212350
IRObjectFile provides all the logic for producing mangled names and getting
symbols from inline assembly.
LTOModule then adds logic for linking specific tasks, like constructing
llvm.compiler_user or extracting linker options from the bitcode.
The rule of the thumb is that IRObjectFile has the functionality that is
needed by both LTO and llvm-ar.
llvm-svn: 212349
This is useful for functions that are not actually available externally but
referenced by a vtable of some kind. Clang emits functions like this for the MS
ABI.
PR20182.
llvm-svn: 212337
The linker relies on relocation type info (e.g. is it a branch?) to perform the
correct actions, so we should keep that even when we end up using a scattered
relocation for whatever reason.
rdar://problem/17553104
llvm-svn: 212333
There were two issues here:
1. At the very least, scattered relocations cannot use the same code to
determine the corresponding symbol being referred to. For some reason we
pretend there is no symbol, even when one actually exists in the symtab, so to
match this behaviour getRelocationSymbol should simply return symbols_end for
scattered relocations.
2. Printing "-" when we can't get a symbol (including the scattered case, but
not exclusively), isn't that helpful. In both cases there *is* interesting
information in that field, so we should print it. As hex will do.
Small part of rdar://problem/17553104
llvm-svn: 212332
We have detected a documentation bug in the encoding tables of the released
MIPS64r6 specification that has resulted in the wrong encodings being used for
these instructions in LLVM. This commit corrects them.
llvm-svn: 212330
any constant, constant FP, or undef splat and to tolerate any undef
lanes in a splat, then replace all uses of isSplatVector in X86's
lowering with it.
This fixes issues where undef lanes in an otherwise splat vector would
prevent the splat logic from firing. It is a touch more awkward to use
this interface, but it is much more accurate. Suggestions for better
interface structuring welcome.
With this fix, the code generated with the widening legalization
strategy for widen_cast-4.ll is *dramatically* improved as the special
lowering strategies for a v16i8 SRA kick in even though the high lanes
are undef.
We also get a slightly different choice for broadcasting an aligned
memory location, and use vpshufd instead of vbroadcastss. This looks
like a minor win for pipelining and domain crossing, but a minor loss
for the number of micro-ops. I suspect its a wash, but folks can easily
tweak the lowering if they want.
llvm-svn: 212324
Silvermont can only decode one instruction per cycle if the instruction exceeds 8 bytes.
Also in Silvermont instructions with more than 3 prefixes will cause 3 cycle penalty.
Maximum nop length is limited to 7 bytes when used for padding on Silvermont.
For other x86 processors max nop length remains unchanged 15 bytes.
Differential Revision: http://reviews.llvm.org/D4374
llvm-svn: 212321
subtarget. This involved having the movt predicate take the current
function - since we care about size in instruction selection for
whether or not to use movw/movt take the function so we can check
the attributes. This required adding the current MachineFunction to
FastISel and propagating through.
llvm-svn: 212309
We want to encourage users of the C++ LTO API to reuse memory buffers instead
of repeatedly opening and reading the same file contents.
This reverts commit r212305 and implements a tidier scheme.
llvm-svn: 212308
When INT_MIN is the numerator in a sdiv, we would not properly handle
overflow when calculating the bounds of possible values; abs(INT_MIN) is
not a meaningful number.
Instead, check and handle INT_MIN by reasoning that the largest value is
INT_MIN/-2 and the smallest value is INT_MIN.
This fixes PR20199.
llvm-svn: 212307
This rename makes it easier to identify the specific overload being called
in each particular case and makes future refactorings easier.
Differential Revision: http://reviews.llvm.org/D4370
llvm-svn: 212302
This patch:
1) Improves the cost model for x86 alternate shuffles (originally
added at revision 211339);
2) Teaches the Cost Model Analysis pass how to analyze alternate shuffles.
Alternate shuffles are a special kind of blend; on x86, we can often
easily lowered alternate shuffled into single blend
instruction (depending on the subtarget features).
The existing cost model didn't take into account subtarget features.
Also, it had a couple of "dead" entries for vector types that are never
legal (example: on x86 types v2i32 and v2f32 are not legal; those are
always either promoted or widened to 128-bit vector types).
The new x86 cost model takes into account what target features we have
before returning the shuffle cost (i.e. the number of instructions
after the blend is lowered/expanded).
This patch also teaches the Cost Model Analysis how to identify and analyze
alternate shuffles (i.e. 'SK_Alternate' shufflevector instructions):
- added function 'isAlternateVectorMask';
- added some logic to check if an instruction is a alternate shuffle and, in
case, call the target specific TTI to get the corresponding shuffle cost;
- added a test to verify the cost model analysis on alternate shuffles.
llvm-svn: 212296
This patch adds tablegen patterns to select F16C float-to-half-float
conversion instructions from 'f32_to_f16' and 'f16_to_f32' dag nodes.
If the target doesn't have F16C, then 'f32_to_f16' and 'f16_to_f32'
are expanded into library calls.
llvm-svn: 212293
Exposes more constant globals that can be removed by
the global optimizer. A specific example is the removal
of the static global block address array in
clang/test/CodeGen/indirect-goto.c. This change impacts only
lower optimization levels. With LTO interprocedural
const prop runs already before global opt.
llvm-svn: 212284