Previously, despite the names 'enqueue' and 'dequeue', it behaved as
a stack and visited blocks in a LIFO fashion. This interacts badly with
extremely broad CFGs *inside* of a loop (such as a large switch inside
a state machine) where every block updates a different variable.
When encountering such a CFG, the checker visited blocks in essentially
a "depth first" order due to the stack-like behavior of the work list.
Combined with each block updating a different variable, the saturation
logic of the checker caused it to re-traverse blocks [1,N-1] of the
broad CFG inside the loop after traversing block N. These re-traversals
were to propagate the variable values derived from block N. Assuming
approximately the same number of variables as inner blocks exist, the
end result is O(N^2) updates. By making this a queue, we also make the
traversal essentially "breadth-first" across each of the N inner blocks
of the loop. Then all of this state is propagated around to all N inner
blocks of the loop. The result is O(N) updates.
The truth is in the numbers:
Before, gcc.c: 96409 block visits (max: 61546, avg: 591)
After, gcc.c: 69958 block visits (max: 33090, avg: 429)
Before, PR10183: 2540494 block vists (max: 2536495, avg: 37360)
After, PR10183: 137803 block visits (max: 134406, avg: 2026)
The nearly 20x reduction in work for PR10183 corresponds to a roughly
100x speedup in compile time.
I've tested it on all the code I can get my hands on, and I've seen no
slowdowns due to this change. Where I've collected stats, the ammount of
work done is on average less. I'll also commit shortly some synthetic
test cases useful in analyzing the performance of CFG-based warnings.
Submitting this based on Doug's feedback that post-commit review should
be good. Ted, please review! Hopefully this helps compile times until
then.
llvm-svn: 134697
Special detail is added for uninitialized variable analysis as this has
serious performance problems than need to be tracked.
Computing some of this data is expensive, for example walking the CFG to
determine its size. To avoid doing that unless the stats data is going
to be used, we thread a bit into the Sema object to track whether
detailed stats should be collected or not. This bit is used to avoid
computations whereever the computations are likely to be more expensive
than checking the state of the flag. Thus, counters are in some cases
unconditionally updated, but the more expensive (and less frequent)
aggregation steps are skipped.
With this patch, we're able to see that for 'gcc.c':
*** Analysis Based Warnings Stats:
232 functions analyzed (0 w/o CFGs).
7151 CFG blocks built.
30 average CFG blocks per function.
1167 max CFG blocks per function.
163 functions analyzed for uninitialiazed variables
640 variables analyzed.
3 average variables per function.
94 max variables per function.
96409 block visits.
591 average block visits per function.
61546 max block visits per function.
And for the reduced testcase in PR10183:
*** Analysis Based Warnings Stats:
98 functions analyzed (0 w/o CFGs).
8526 CFG blocks built.
87 average CFG blocks per function.
7277 max CFG blocks per function.
68 functions analyzed for uninitialiazed variables
1359 variables analyzed.
19 average variables per function.
1196 max variables per function.
2540494 block visits.
37360 average block visits per function.
2536495 max block visits per function.
That last number is the somewhat scary one that indicates the problem in
PR10183.
llvm-svn: 134494
specifiers. Fixes <rdar://problem/9607158>." because it causes false positives
on some code that uses CF toll free bridging.
- I'll let Doug or Ted figure out the right fix here, possibly just to accept
any pointer type.
llvm-svn: 134041
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
Related result types apply Cocoa conventions to the type of message
sends and property accesses to Objective-C methods that are known to
always return objects whose type is the same as the type of the
receiving class (or a subclass thereof), such as +alloc and
-init. This tightens up static type safety for Objective-C, so that we
now diagnose mistakes like this:
t.m:4:10: warning: incompatible pointer types initializing 'NSSet *'
with an
expression of type 'NSArray *' [-Wincompatible-pointer-types]
NSSet *array = [[NSArray alloc] init];
^ ~~~~~~~~~~~~~~~~~~~~~~
/System/Library/Frameworks/Foundation.framework/Headers/NSObject.h:72:1:
note:
instance method 'init' is assumed to return an instance of its
receiver
type ('NSArray *')
- (id)init;
^
It also means that we get decent type inference when writing code in
Objective-C++0x:
auto array = [[NSMutableArray alloc] initWithObjects:@"one", @"two",nil];
// ^ now infers NSMutableArray* rather than id
llvm-svn: 132868
Also, have Environment stop looking through NoOp casts; it didn't match the behavior of LiveVariables. And once that's gone, the whole cast block of that switch is unnecessary.
llvm-svn: 132840
This introduces a generic base class for the expression evaluator
classes, which handles a few common expression types which were
previously handled separately in each class. Also, the expression
evaluator now uses ConstStmtVisitor.
llvm-svn: 131281
instantiation), be sure to add the transformed declaration into the
current DeclContext. Also, remove the -Wuninitialized hack that works
around this bug. Fixes <rdar://problem/9200676>.
llvm-svn: 129544
evaluated and unevaluated contexts. Add some testing of sizeof and
typeid.
Both of the typeid tests added here were triggering warnings previously.
Now the one false positive is suppressed without suppressing the warning
on actually buggy code.
llvm-svn: 129431
marked explicitly as uninitialized through direct self initialization:
int x = x;
With r128894 we prevented warnings about this code, and this patch
teaches the analysis engine to continue analyzing subsequent uses of
'x'. This should wrap up PR9624.
There is still an open question of whether we should suppress the
maybe-uninitialized warnings resulting from variables initialized in
this fashion. The definitely-uninitialized uses should always be warned.
llvm-svn: 128932
1) Change the CFG to include the DeclStmt for conditional variables, instead of using the condition itself as a faux DeclStmt.
2) Update ExprEngine (the static analyzer) to understand (1), so not to regress.
3) Update UninitializedValues.cpp to initialize all tracked variables to Uninitialized at the start of the function/method.
4) Only use the SelfReferenceChecker (SemaDecl.cpp) on global variables, leaving the dataflow analysis to handle other cases.
The combination of (1) and (3) allows the dataflow-based -Wuninitialized to find self-init problems when the initializer
contained control-flow.
llvm-svn: 128858
Note this can potentially be enhanced to detect if the __block variable
is actually written by the block, or only when the block "escapes" or
is actually used, but that requires more analysis than it is probably worth
for this simple check.
llvm-svn: 128681
my expertise on the template instantiation logic isn't good enough to fix this problem for real. This patch worksaround the
problem in -Wuninitialized, but we should fix it for real later.
llvm-svn: 128443
This rename serves two purposes:
- It reflects the actual functionality of this analysis.
- We will have more than one reachability analysis.
llvm-svn: 127930