This CL uses the recently added op to finish the implementation of Vector -> Vector unrolling by replacing the "fake join op" by a series of InsertStridedSliceOp.
Test is updated accordingly
PiperOrigin-RevId: 282451126
This new op is the counterpart of vector.StridedSliceOp and will be used for in the pattern rewrites for vector unrolling.
PiperOrigin-RevId: 282447414
A mismatch in the function declaration and function definition,
prevented the implementation of the createGPUToSPIRVLoweringPass from
being exposed.
PiperOrigin-RevId: 282419815
Moving cuda-runtime-wrappers.so into subdirectory to match libmlir_runner_utils.so.
Provide parent directory when running test and load .so from subdirectory.
PiperOrigin-RevId: 282410749
To simplify the lowering into SPIR-V, while still respecting the ABI
requirements of SPIR-V/Vulkan, split the process into two
1) While lowering a function to SPIR-V (when the function is an entry
point function), allow specifying attributes on arguments and
function itself that describe the ABI of the function.
2) Add a pass that materializes the ABI described in the function.
Two attributes are needed.
1) Attribute on arguments of the entry point function that describe
the descriptor_set, binding, storage class, etc, of the
spv.globalVariable this argument will be replaced by
2) Attribute on function that specifies workgroup size, etc. (for now
only workgroup size).
Add the pass -spirv-lower-abi-attrs to materialize the ABI described
by the attributes.
This change makes the SPIRVBasicTypeConverter class unnecessary and is
removed, further simplifying the SPIR-V lowering path.
PiperOrigin-RevId: 282387587
Memref_cast supports cast from static shape to dynamic shape
memrefs. The same should be true for strides as well, i.e a memref
with static strides can be casted to a memref with dynamic strides.
PiperOrigin-RevId: 282381862
This is the counterpart of vector.extractelement op and has the same
limitations at the moment (static I64IntegerArrayAttr to express position).
This restriction will be filterd in the future.
LLVM lowering will be added in a subsequent commit.
PiperOrigin-RevId: 282365760
Introduce a new function-like operation to the GPU dialect to provide a
placeholder for the execution semantic description and to add support for GPU
memory hierarchy. This aligns with the overall goal of the dialect to expose
the common abstraction layer for GPU devices, in particular by providing an
MLIR unit of semantics (i.e. an operation) for memory modeling.
This proposal has been discussed in the mailing list:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/RfXNP7Hklsc/MBNN7KhjAgAJ
As decided, the "convergence" aspect of the execution model will be factored
out into a new discussion and therefore is not included in this commit. This
commit only introduces the operation but does not hook it up with the remaining
flow. The intention is to develop the new flow while keeping the old flow
operational and do the switch in a simple, separately reversible commit.
PiperOrigin-RevId: 282357599
This CL added necessary files and settings for using DRR to
write SPIR-V canonicalization patterns and also converted the
patterns for spv.Bitcast and spv.LogicalNot.
PiperOrigin-RevId: 282132786
The check in isValidSymbol, as far as a DimOp result went, checked if
the dim op was on a top-level memref. However, any alloc'ed, view, or
subview memref would be fine as long as the corresponding dimension of
that memref is either a static one or was in turn created using a valid
symbol in the case of dynamic dimensions.
Reported-by: Jose Gomez
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#252
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/252 from bondhugula:symbol 7b57dc394df9375e651f497231c6e4525a32a662
PiperOrigin-RevId: 282097114
Support for including a file multiple times was added in tablegen, removing the need for these extra guards. This is because we already insert c/c++ style header guards within each of the specific .td files.
PiperOrigin-RevId: 282076728
Add a canonicalizer for `spirv::LogicalNotOp`.
Converts:
* spv.LogicalNot(spv.IEqual(...)) -> spv.INotEqual(...)
* spv.LogicalNot(spv.INotEqual(...)) -> spv.IEqual(...)
* spv.LogicalNot(spv.LogicalEqual(...)) -> spv.LogicalNotEqual(...)
* spv.LogicalNot(spv.LogicalNotEqual(...)) -> spv.LogicalEqual(...)
Also moved the test for spv.IMul to arithemtic tests.
Closestensorflow/mlir#256
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/256 from denis0x0D:sandbox/canon_logical_not 76ab5787b2c777f948c8978db061d99e76453d44
PiperOrigin-RevId: 282012356
Depending on which of the offsets, sizes, or strides are constant, the
subview op can be canonicalized in different ways. Add such
canonicalizations, which generalize the existing approach of
canonicalizing subview op only if all of offsets, sizes and shapes are
constants.
PiperOrigin-RevId: 282010703
Change vector op names from VectorFooOp to Vector_FooOp and from
vector::VectorFooOp to vector::FooOp.
Closestensorflow/mlir#257
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/257 from Kayjukh:master dfc3a0e04114885aaec8740d5951d6984d6e1577
PiperOrigin-RevId: 281967461
This changes changes the OpDefinitionsGen to automatically add the OpAsmOpInterface for operations with multiple result groups using the provided ODS names. We currently just limit the generation to multi-result ops as most single result operations don't have an interesting name(result/output/etc.). An example is shown below:
// The following operation:
def MyOp : ... {
let results = (outs AnyType:$first, Variadic<AnyType>:$middle, AnyType);
}
// May now be printed as:
%first, %middle:2, %0 = "my.op" ...
PiperOrigin-RevId: 281834156
This avoids the need to cast back to the derived type when calling get, i.e. removes the need to do DenseIntElementsAttr::get(...).cast<DenseIntElementsAttr>().
PiperOrigin-RevId: 281772163
This will make it easier to scale out test patterns and build specific passes that do not interfere with independent testing.
PiperOrigin-RevId: 281736335
Due to legacy reasons, a newline character followed by two spaces was always
inserted before the attributes of the function Op in pretty form. This breaks
formatting when functions are nested in some other operations. Don't print the
newline and just put the attributes on the same line, which is also more
consistent with module Op. Line breaking aware of indentation can be introduced
separately into the parser if deemed useful.
PiperOrigin-RevId: 281721793
This moves the different canonicalizations of regions into one place and invokes them in the fixed-point iteration of the canonicalizer.
PiperOrigin-RevId: 281617072
This is a simple multi-level DCE pass that operates pretty generically on
the IR. Its key feature compared to the existing peephole dead op folding
that happens during canonicalization is being able to delete recursively
dead cycles of the use-def graph, including block arguments.
PiperOrigin-RevId: 281568202
The current SubViewOp specification allows for either all offsets,
shape and stride to be dynamic or all of them to be static. There are
opportunities for more fine-grained canonicalization based on which of
these are static. For example, if the sizes are static, the result
memref is of static shape. The specification of SubViewOp is modified
to allow on or more of offsets, shapes and strides to be statically
specified. The verification is updated to ensure that the result type
of the subview op is consistent with which of these are static and
which are dynamic.
PiperOrigin-RevId: 281560457
This CL uses the pattern rewrite infrastructure to implement a simple VectorOps -> VectorOps legalization strategy to unroll coarse-grained vector operations into finer grained ones.
The transformation is written using local pattern rewrites to allow composition with other rewrites. It proceeds by iteratively introducing fake cast ops and cleaning canonicalizing or lowering them away where appropriate.
This is an example of writing transformations as compositions of local pattern rewrites that should enable us to make them significantly more declarative.
PiperOrigin-RevId: 281555100
This interface provides more fine-grained hooks into the AsmPrinter than the dialect interface, allowing for operations to define the asm name to use for results directly on the operations themselves. The hook is also expanded to enable defining named result "groups". Get a special name to use when printing the results of this operation.
The given callback is invoked with a specific result value that starts a
result "pack", and the name to give this result pack. To signal that a
result pack should use the default naming scheme, a None can be passed
in instead of the name.
For example, if you have an operation that has four results and you want
to split these into three distinct groups you could do the following:
setNameFn(getResult(0), "first_result");
setNameFn(getResult(1), "middle_results");
setNameFn(getResult(3), ""); // use the default numbering.
This would print the operation as follows:
%first_result, %middle_results:2, %0 = "my.op" ...
PiperOrigin-RevId: 281546873