Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225000
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224941
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224385
Richard rejected my Sema change to interpret an integer literal zero in
a varargs context as a null pointer, so -Wsentinel sees an integer
literal zero and fires off a warning. Only CodeGen currently knows that
it promotes integer literal zeroes in this context to pointer size on
Windows. I didn't want to teach -Wsentinel about that compatibility
hack. Therefore, I'm migrating to C++11 nullptr.
llvm-svn: 223079
Rethrowing exceptions in the MS model is very simple: just call
_CxxThrowException with nullptr for both arguments.
N.B. They chose stdcall as the calling convention for x86 but cdecl for
all other platforms.
llvm-svn: 222733
When targeting Windows itanium (a MSVC environment), use itanium style
exceptions rather than SEH. Existing test cases already test this code path.
Applying this change ensures that tests wont break due to a parallel change in
LLVM (to correctly report isMSVCEnvironment).
llvm-svn: 222179
This option was misleading because it looked like it enabled the
language feature of SEH (__try / __except), when this option was really
controlling which EH personality function to use. Mingw only supports
SEH and SjLj EH on x86_64, so we can simply do away with this flag.
llvm-svn: 221963
While we ran getUnqualifiedType over the catch type,
it isn't enough for array types. Use getUnqualifiedArrayType instead.
This fixes PR21252.
llvm-svn: 219582
This adds a flag called -fseh-exceptions that uses the native Windows
.pdata and .xdata unwind mechanism to throw exceptions. The other EH
possibilities are DWARF and SJLJ exceptions.
Patch by Martell Malone!
Reviewed By: asl, rnk
Differential Revision: http://reviews.llvm.org/D3419
llvm-svn: 217790
This patch removes the dead code, and refines the
getEHResumeBlock() slightly.
The CleanupHackLevel was a hack to the old exception
handling intrinsics, which have several issues with function
inliner.
Since LLVM 3.0, the new landingpad and resume instructions
are added to LLVM IR. With the new exception handling
mechanism, most of the issues are fixed now. We should
always use these instructions to implement the exception
handling code nowadays, and we don't need the hack any more.
Besides, the `CleanupHackLevel` is a compile-time constant,
thus other cases have been considered as dead code for a while.
llvm-svn: 212097
Currently, users get error messages about RTTI descriptor mangling with
no useful source location. This addresses that.
Another approach would be to disable C++ exceptions by default in the
driver when using the Microsoft C++ ABI. However, this makes it
impossible to parse system headers that use exception handling
constructs. By delaying the error to IRgen, we can figure out if we
actually need to emit code for this construct. Additionally, users who
are only interested in building refactoring tools on Windows still get a
correct AST without having to add flags. Finally, this is consistent
with what we do for SEH.
llvm-svn: 207999
r203364: what was use_iterator is now user_iterator, and there is
a use_iterator for directly iterating over the uses.
This also switches to use the range-based APIs where appropriate.
llvm-svn: 203365
class and use it pervasively to restore debug locations.
Fixes an interaction between cleanup and EH that caused the location
to not be restored properly after emitting a landing pad.
rdar://problem/15208190
llvm-svn: 199444
r174939-40 caused us to do this in the canonical terminate lpad,
but when the EH stack has other cleanups on it we use the
terminate handler block, which wasn't doing this.
Fixes the rest of rdar://11904428 given appropriate stdlib support.
llvm-svn: 184475
aggregate types in a profoundly wrong way that has to be
worked around in every call site, to getEvaluationKind,
which classifies and distinguishes between all of these
cases.
Also, normalize the API for loading and storing complexes.
I'm working on a larger patch and wanted to pull these
changes out, but it would have be annoying to detangle
them from each other.
llvm-svn: 176656
calls and declarations.
LLVM has a default CC determined by the target triple. This is
not always the actual default CC for the ABI we've been asked to
target, and so we sometimes find ourselves annotating all user
functions with an explicit calling convention. Since these
calling conventions usually agree for the simple set of argument
types passed to most runtime functions, using the LLVM-default CC
in principle has no effect. However, the LLVM optimizer goes
into histrionics if it sees this kind of formal CC mismatch,
since it has no concept of CC compatibility. Therefore, if this
module happens to define the "runtime" function, or got LTO'ed
with such a definition, we can miscompile; so it's quite
important to get this right.
Defining runtime functions locally is quite common in embedded
applications.
llvm-svn: 176286
Manually fix the order of UnwrappedLineParser.cpp as that one didn't
have its associated header as the first header.
This also uncovered a subtle inclusion order dependency as CLog.h didn't
include LLVM.h to pick up using declarations it relied upon.
llvm-svn: 172892
target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
semantics of a ctor/dtor function-try-block catch handler
by pushing a normal cleanup is not just overkill but actually
actively wrong when the handler contains an explicit return
(which is only legal in a dtor). Just emit the rethrow as
ordinary code at the fallthrough point. Fixes PR13102.
llvm-svn: 158488
need to provide a 'dominating IP' which is guaranteed to
dominate the (de)activation point but which cannot be avoided
along any execution path from the (de)activation point to
the push-point of the cleanup. Using the entry block is
bad mojo.
llvm-svn: 144276
It's not valid to remove filters from landingpad instructions, even if we catch
the type. The metadata won't be set up correctly.
Testcase is projects/llvm-test/SingleSource/UnitTests/EH/filter-2.cpp.
llvm-svn: 140335
check for the landingpad instruction instead. This check looks at each of the
clauses in the landingpad instruction. If it's a catch clause, it compares the
name directly with the global. If it's a filter clause, it has to look through
each value in the filer to see if any have the prefix.
llvm-svn: 140075
This model uses the 'landingpad' instruction, which is pinned to the top of the
landing pad. (A landing pad is defined as the destination of the unwind branch
of an invoke instruction.) All of the information needed to generate the correct
exception handling metadata during code generation is encoded into the
landingpad instruction.
The new 'resume' instruction takes the place of the llvm.eh.resume intrinsic
call. It's lowered in much the same way as the intrinsic is.
llvm-svn: 140049
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
hierarchy of delegation, and that EH selector values are meaningful
function-wide (good thing, too, or inlining wouldn't work).
2,3d
1a
hierarchy of delegation and that EH selector values have the same
meaning everywhere in the function instead of being meaningful only
in the context of a specific selector.
This removes the need for routing edges through EH cleanups,
since a cleanup simply always branches to its enclosing scope.
llvm-svn: 137293
existence by always threading an edge from the catchall. Not doing
this was previously causing a crash in the very extreme case where
neither the normal cleanup nor the EH catchall was actually reachable:
we would delete the catchall entry block, which would cause us to
delete the entry block of the finally cleanup as well because the
cleanup logic would merge the blocks, which in turn triggered an assert
because later blocks in the finally would still be using values from the
entry. Laziness turns out to be the most elegant solution to the problem.
llvm-svn: 133601
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
to be careful to emit landing pads that are always prepared to handle a
cleanup path. This is correct mostly because of the fix to the LLVM
inliner, r132200.
llvm-svn: 132209
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
C++ exceptions, even when exceptions have been turned off using -fno-exceptions.
Make the -fobjc-exceptions flag do the same thing, but for Objective-C exceptions.
C++ and Objective-C exceptions can also be disabled using -fno-cxx-excptions and
-fno-objc-exceptions.
llvm-svn: 126630
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744