Commit Graph

87 Commits

Author SHA1 Message Date
Simon Pilgrim 8fbc7fd567 [DAG] SimplifyMultipleUseDemandedBits - peek through unused ISD::INSERT_SUBVECTOR subvectors
If we don't demand any elements of the inserted subvector then just skip it.
2020-01-31 18:57:22 +00:00
Sanjay Patel cb5612e2df [DAGCombiner] reduce extract subvector of concat
If we are extracting a chunk of a vector that's a fraction of an
operand of the concatenated vector operand, we can extract directly
from one of those original operands.

This is another suggestion from PR42024:
https://bugs.llvm.org/show_bug.cgi?id=42024#c2

But I'm not sure yet if it will make any difference on those patterns.
It seems to help a few existing AVX512 tests though.

Differential Revision: https://reviews.llvm.org/D72361
2020-01-09 09:38:12 -05:00
Craig Topper 18e8d02e8c [X86] Pass v32i16/v64i8 in zmm registers on KNL target.
gcc and icc pass these types in zmm registers in zmm registers.

This patch implements a quick hack to override the register
type before calling convention handling to one that is legal.
Longer term we might want to do something similar to 256-bit
integer registers on AVX1 where we just split all the operations.

Fixes PR42957

Differential Revision: https://reviews.llvm.org/D66708

llvm-svn: 370495
2019-08-30 17:35:08 +00:00
Craig Topper a0d92c7262 [X86] Teach lowerV4I32Shuffle to only use broadcasts if the mask has more than one undef element. Prioritize shifts over broadcast in lowerV8I16Shuffle.
The motivating case are the changes in vector-reduce-add.ll where
we were doing extra work in the scalar domain instead of shuffling.
There may be some one use check that needs to be looked into there,
but this patch sidesteps the issue by avoiding broadcasts that
aren't really broadcasting.

Differential Revision: https://reviews.llvm.org/D66071

llvm-svn: 369287
2019-08-19 18:15:50 +00:00
Craig Topper 8b5f2ab2a4 Recommit r367901 "[X86] Enable -x86-experimental-vector-widening-legalization by default."
The assert that caused this to be reverted should be fixed now.

Original commit message:

This patch changes our defualt legalization behavior for 16, 32, and
64 bit vectors with i8/i16/i32/i64 scalar types from promotion to
widening. For example, v8i8 will now be widened to v16i8 instead of
promoted to v8i16. This keeps the elements widths the same and pads
with undef elements. We believe this is a better legalization strategy.
But it carries some issues due to the fragmented vector ISA. For
example, i8 shifts and multiplies get widened and then later have
to be promoted/split into vXi16 vectors.

This has the potential to cause regressions so we wanted to get
it in early in the 10.0 cycle so we have plenty of time to
address them.

Next steps will be to merge tests that explicitly test the command
line option. And then we can remove the option and its associated
code.

llvm-svn: 368183
2019-08-07 16:24:26 +00:00
Mitch Phillips bd0d97e1c4 Revert "[X86] Enable -x86-experimental-vector-widening-legalization by default."
This reverts commit 3de33245d2.

This commit broke the MSan buildbots. See
https://reviews.llvm.org/rL367901 for more information.

llvm-svn: 368107
2019-08-06 23:00:43 +00:00
Craig Topper 3de33245d2 [X86] Enable -x86-experimental-vector-widening-legalization by default.
This patch changes our defualt legalization behavior for 16, 32, and
64 bit vectors with i8/i16/i32/i64 scalar types from promotion to
widening. For example, v8i8 will now be widened to v16i8 instead of
promoted to v8i16. This keeps the elements widths the same and pads
with undef elements. We believe this is a better legalization strategy.
But it carries some issues due to the fragmented vector ISA. For
example, i8 shifts and multiplies get widened and then later have
to be promoted/split into vXi16 vectors.

This has the potential to cause regressions so we wanted to get
it in early in the 10.0 cycle so we have plenty of time to
address them.

Next steps will be to merge tests that explicitly test the command
line option. And then we can remove the option and its associated
code.

llvm-svn: 367901
2019-08-05 18:25:36 +00:00
Craig Topper 510e6fadaa [X86] When using AND+PACKUS in lowerV16I8Shuffle, generate the build vector directly in v16i8 with the correct 0x00 or 0xFF elements rather than using another VT and bitcasting it.
The build_vector will become a constant pool load. By using the
desired type initially, it ensures we don't generate a bitcast
of the constant pool load which will need to be folded with
the load.

While experimenting with another patch, I noticed that when the
load type and the constant pool type don't match, then
SimplifyDemandedBits can't handle it. While we should probably
fix that, this was a simple way to fix the issue I saw.

llvm-svn: 366732
2019-07-22 19:58:49 +00:00
Simon Pilgrim c0711af7f9 [X86][AVX] combineExtractSubvector - 'little to big' extract_subvector(bitcast()) support
Ideally this needs to be a generic combine in DAGCombiner::visitEXTRACT_SUBVECTOR but there's some nasty regressions in aarch64 due to neon shuffles not handling bitcasts at all.....

llvm-svn: 364407
2019-06-26 11:21:09 +00:00
Sanjay Patel 606eb2367f [x86] split 256-bit store of concatenated vectors
This shows up as a side issue to the main problem for the AVX target example from PR37428:
https://bugs.llvm.org/show_bug.cgi?id=37428 - https://godbolt.org/z/7tpRa3

But as we can see in the pile of existing test diffs, it's actually a widespread problem
that affects any AVX or later target. Apart from a couple of oddballs, I think these are
all improvements for the reasons stated in the code comment: we do not want to enable YMM
unnecessarily (avoid vzeroupper and frequency throttling) and some cores split 256-bit
stores anyway.

We could say that MergeConsecutiveStores() is going overboard on some of these examples,
but that won't solve the problem completely. But that is a reason I'm proposing this as
a lowering rather than a combine: we will infinite loop fighting the merge code if we try
this earlier.

Differential Revision: https://reviews.llvm.org/D62498

llvm-svn: 362524
2019-06-04 16:40:04 +00:00
Sanjay Patel f7980e727f Revert "[x86] split 256-bit store of concatenated vectors"
This reverts commit d5a8637072.

Most likely suspect for this bot failure:
http://lab.llvm.org:8011/builders/clang-cmake-x86_64-avx2-linux/builds/9684

llvm-svn: 361850
2019-05-28 17:37:58 +00:00
Sanjay Patel d5a8637072 [x86] split 256-bit store of concatenated vectors
This shows up as a side issue to the main problem for the AVX target example from PR37428:
https://bugs.llvm.org/show_bug.cgi?id=37428 - https://godbolt.org/z/7tpRa3

But as we can see in the pile of existing test diffs, it's actually a widespread problem
that affects any AVX or later target. Apart from a couple of oddballs, I think these are
all improvements for the reasons stated in the code comment: we do not want to enable YMM
unnecessarily (avoid vzeroupper and frequency throttling) and some cores split 256-bit
stores anyway.

We could say that MergeConsecutiveStores() is going overboard on some of these examples,
but that won't solve the problem completely. But that is the reason I'm proposing this as
a lowering rather than a combine: we will infinite loop fighting the merge code if we try
this earlier.

Differential Revision: https://reviews.llvm.org/D62498

llvm-svn: 361822
2019-05-28 13:54:17 +00:00
Simon Pilgrim b0f51266b8 [X86][AVX] Fold concat(packus(),packus()) -> packus(concat(),concat()) (PR34773)
Basic "revectorization" combine, we can probably do more opcodes here but it can be a tricky cost-benefit depending on where the subvectors came from - but this case helps shuffle combining.

llvm-svn: 360134
2019-05-07 11:17:39 +00:00
Craig Topper 3649c20884 [X86] Use INSERT_SUBREG rather than SUBREG_TO_REG when creating LEA64_32 during isel.
SUBREG_TO_REG is supposed to be used to assert that we know the upper bits are
zero. But that isn't the case here. We've done no analysis of the inputs.

llvm-svn: 357673
2019-04-04 05:00:18 +00:00
Simon Pilgrim 10c9032c02 [X86][SSE] detectAVGPattern - Match zext(or(x,y)) 'add like' patterns (PR41316)
Fixes PR41316 where the expanded PAVG intrinsic had had one of its ADDs turned into an OR due to its operands having no conflicting bits.

llvm-svn: 357351
2019-03-30 17:12:29 +00:00
Simon Pilgrim cfdf09ba7d [X86][SSE] Add PAVG test case from PR41316
llvm-svn: 357346
2019-03-30 13:53:11 +00:00
Simon Pilgrim a71c0ed471 [X86][AVX] Start shuffle combining from ZERO_EXTEND_VECTOR_INREG (PR40685)
Just enable this for AVX for now as SSE41 introduces extra register moves for the PMOVZX(PSHUFD(V)) -> UNPCKH(V,0) pattern (but otherwise helps reduce port5 usage on Intel targets).

Only AVX support is required for PR40685 as the issue is due to 8i8->8i32 zext shuffle leftovers.

llvm-svn: 356858
2019-03-24 16:30:35 +00:00
Simon Pilgrim 65165d54bb [X86] Add SimplifyDemandedBitsForTargetNode support for PINSRB/PINSRW
llvm-svn: 356270
2019-03-15 16:16:49 +00:00
Sanjay Patel 21aa6ddc14 [x86] narrow a shuffle that doesn't use or set any high elements
This isn't the final fix for our reduction/horizontal codegen, but it takes care 
of a lot of the problems. After we narrow the shuffle, existing combines for 
insert/extract and binops kick in, and we end up with cheaper 128-bit ops.

The avg and mul reduction tests show an existing shuffle lowering hole for 
AVX2/AVX512. I think in its most minimal form this is:
https://bugs.llvm.org/show_bug.cgi?id=40434
...but we might need multiple fixes to get it right.

Differential Revision: https://reviews.llvm.org/D57156

llvm-svn: 352209
2019-01-25 15:37:42 +00:00
Craig Topper 0ec17884de [LegalizeVectorTypes] Don't use SplitVecOp_TruncateHelper if we're heading towards scalarizing the type.
This code takes a truncate, fp_to_int, or int_to_fp with a legal result type and an input type that needs to be split and enlarges the elements in the result type before doing the split. Then inserts a follow up truncate or fp_round after concatenating the two halves back together.

But if the input type of the original op is being split on its way to ultimately being scalarized we're just going to end up building a vector from scalars and then truncating or rounding it in the vector register. Seems kind of silly to enlarge the result element type of the operation only to end up with scalar code and then building a vector with large elements only to make the elements smaller again in the vector register. Seems better to just try to get away producing smaller result types in the scalarized code.

The X86 test case that changes is a pretty contrived test case that exists because of a bug we used to have in our AVG matching code. I think the code is better now, but its not realistic anyway.

llvm-svn: 347482
2018-11-23 02:32:13 +00:00
Craig Topper b239763384 [LegalizeVectorTypes] Have SplitVecOp_TruncateHelper fall back to SplitVecOp_UnaryOp if splitting the output type would be a legal type.
SplitVecOp_TruncateHelper tries to introduce a multilevel truncate to avoid scalarization. But if splitting the result type would still be a legal type we don't need to do that.

The comment block at the top of the function implied that this was already implemented. I looked back through the history and it doesn't look to have ever been checked.

llvm-svn: 347479
2018-11-22 22:56:52 +00:00
Craig Topper bc8148f7b0 [X86] Lower v16i16->v8i16 truncate using an 'and' with 255, an extract_subvector, and a packuswb instruction.
Summary: This is an improvement over the two pshufbs and punpcklqdq we'd get otherwise.

Reviewers: RKSimon, spatel

Reviewed By: RKSimon

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D54671

llvm-svn: 347171
2018-11-18 17:59:28 +00:00
Sanjay Patel 0a515595a7 [x86] allow vector load narrowing with multi-use values
This is a long-awaited follow-up suggested in D33578. Since then, we've picked up even more
opportunities for vector narrowing from changes like D53784, so there are a lot of test diffs.
Apart from 2-3 strange cases, these are all wins.

I've structured this to be no-functional-change-intended for any target except for x86
because I couldn't tell if AArch64, ARM, and AMDGPU would improve or not. All of those
targets have existing regression tests (4, 4, 10 files respectively) that would be
affected. Also, Hexagon overrides the shouldReduceLoadWidth() hook, but doesn't show
any regression test diffs. The trade-off is deciding if an extra vector load is better
than a single wide load + extract_subvector.

For x86, this is almost always better (on paper at least) because we often can fold
loads into subsequent ops and not increase the official instruction count. There's also
some unknown -- but potentially large -- benefit from using narrower vector ops if wide
ops are implemented with multiple uops and/or frequency throttling is avoided.

Differential Revision: https://reviews.llvm.org/D54073

llvm-svn: 346595
2018-11-10 20:05:31 +00:00
Craig Topper 60c202a494 [X86] Don't emit *_extend_vector_inreg nodes when both the input and output types are legal with AVX1
We already have custom lowering for the AVX case in LegalizeVectorOps. So its better to keep the regular extend op around as long as possible.

I had to qualify one place in DAG combine that created illegal vector extending load operations. This change by itself had no effect on any tests which is why its included here.

I've made a few cleanups to the custom lowering. The sign extend code no longer creates an identity shuffle with undef elements. The zero extend code now emits a zero_extend_vector_inreg instead of an unpckl with a zero vector.

For the high half of the custom lowering of zero_extend/any_extend, we're now using an unpckh with a zero vector or undef. Previously we used used a pshufd to move the upper 64-bits to the lower 64-bits and then used a zero_extend_vector_inreg. I think the zero vector should require less execution resources and be smaller code size.

Differential Revision: https://reviews.llvm.org/D54024

llvm-svn: 346043
2018-11-02 21:09:49 +00:00
Craig Topper 6c3f1692c8 Revert r345165 "[X86] Bring back the MOV64r0 pseudo instruction"
Google is reporting regressions on some benchmarks.

llvm-svn: 345785
2018-10-31 21:53:24 +00:00
Craig Topper 2417273255 [X86] Bring back the MOV64r0 pseudo instruction
This patch brings back the MOV64r0 pseudo instruction for zeroing a 64-bit register. This replaces the SUBREG_TO_REG MOV32r0 sequence we use today. Post register allocation we will rewrite the MOV64r0 to a 32-bit xor with an implicit def of the 64-bit register similar to what we do for the various XMM/YMM/ZMM zeroing pseudos.

My main motivation is to enable the spill optimization in foldMemoryOperandImpl. As we were seeing some code that repeatedly did "xor eax, eax; store eax;" to spill several registers with a new xor for each store. With this optimization enabled we get a store of a 0 immediate instead of an xor. Though I admit the ideal solution would be one xor where there are multiple spills. I don't believe we have a test case that shows this optimization in here. I'll see if I can try to reduce one from the code were looking at.

There's definitely some other machine CSE(and maybe other passes) behavior changes exposed by this patch. So it seems like there might be some other deficiencies in SUBREG_TO_REG handling.

Differential Revision: https://reviews.llvm.org/D52757

llvm-svn: 345165
2018-10-24 17:32:09 +00:00
Craig Topper 671779456a [X86] Add 128 MOVDDUP to the constant pool printing in X86AsmPrinter::EmitInstruction.
We use this instruction to broadcast a single 64-bit value to a v2i64/v2f64 vector.

llvm-svn: 344486
2018-10-15 01:51:53 +00:00
Simon Pilgrim 720db8ed7b [X86][AVX1] Enable *_EXTEND_VECTOR_INREG lowering of 256-bit vectors
As discussed on D52964, this adds 256-bit *_EXTEND_VECTOR_INREG lowering support for AVX1 targets to help improve SimplifyDemandedBits handling.

Differential Revision: https://reviews.llvm.org/D52980

llvm-svn: 344019
2018-10-09 07:42:01 +00:00
Simon Pilgrim 6fc8d05565 [X86][AVX2] Enable ZERO_EXTEND_VECTOR_INREG lowering of 256-bit vectors
Some necessary yak shaving before lowering *_EXTEND_VECTOR_INREG 256-bit vectors on AVX1 targets as suggested by D52964.

Differential Revision: https://reviews.llvm.org/D52970

llvm-svn: 343991
2018-10-08 18:40:50 +00:00
Simon Pilgrim 2d0f20cc04 [X86] Handle COPYs of physregs better (regalloc hints)
Enable enableMultipleCopyHints() on X86.

Original Patch by @jonpa:

While enabling the mischeduler for SystemZ, it was discovered that for some reason a test needed one extra seemingly needless COPY (test/CodeGen/SystemZ/call-03.ll). The handling for that is resulted in this patch, which improves the register coalescing by providing not just one copy hint, but a sorted list of copy hints. On SystemZ, this gives ~12500 less register moves on SPEC, as well as marginally less spilling.

Instead of improving just the SystemZ backend, the improvement has been implemented in common-code (calculateSpillWeightAndHint(). This gives a lot of test failures, but since this should be a general improvement I hope that the involved targets will help and review the test updates.

Differential Revision: https://reviews.llvm.org/D38128

llvm-svn: 342578
2018-09-19 18:59:08 +00:00
Craig Topper 5cbce81c91 [X86] Don't create ZERO_EXTEND_INREG/SIGN_EXTEND_INREG for v1iX vectors.
The generic type legalizer will scalarize vXi1 instructions getting rid of the vector entirely. Creating wider vector instructions is just going to prevent that.

llvm-svn: 341705
2018-09-07 20:56:03 +00:00
Craig Topper 39f48fdcbc [X86] Don't create X86ISD::AVG nodes from v1iX vectors.
The type legalizer will try to scalarize this and fail.

It looks like there's some other v1iX oddities out there too since we still generated some vector instructions.

llvm-svn: 341704
2018-09-07 20:56:01 +00:00
Simon Pilgrim ad45efc445 [X86][SSE] Consistently prefer lowering to PACKUS over PACKSS
We have some combines/lowerings that attempt to use PACKSS-then-PACKUS and others that use PACKUS-then-PACKSS.

PACKUS is much easier to combine with if we know the upper bits are zero as ComputeKnownBits can easily see through BITCASTs etc. especially now that rL333995 and rL334007 have landed. It also effectively works at byte level which further simplifies shuffle combines.

The only (minor) annoyances are that ComputeKnownBits can sometimes take longer as it doesn't fail as quickly as ComputeNumSignBits (but I'm not seeing any actual regressions in tests) and PACKUSDW only became available after SSE41 so we have more codegen diffs between targets.

llvm-svn: 334276
2018-06-08 10:29:00 +00:00
Vedant Kumar cc7b2a55c2 [DAGCombiner] Change the SDLoc on split extloads (2/N)
In DAGCombiner, we try to simplify this pattern:

  ([s|z]ext (load ...))

Conceptually, a new extload which is created while splitting the load
should have the same debug location as the load.

Making this change affects the IROrder of the new load, causing some
test case churn.

In practice, the new location is never different from the location of
the [s|z]ext, at least not during check-llvm or a stage2 build.

Part of: llvm.org/PR37262

Differential Revision: https://reviews.llvm.org/D46156

llvm-svn: 331301
2018-05-01 19:29:15 +00:00
Vedant Kumar ee4bfcaa5a [DAGCombiner] Set the right SDLoc on a newly-created zextload (1/N)
Setting the right SDLoc on a newly-created zextload fixes a line table
bug which resulted in non-linear stepping behavior.

Several backend tests contained CHECK lines which relied on the IROrder
inherited from the wrong SDLoc. This patch breaks that dependence where
feasbile and regenerates test cases where not.

In some cases, changing a node's IROrder may alter register allocation
and spill behavior. This can affect performance. I have chosen not to
prevent this by applying a "known good" IROrder to SDLocs, as this may
hide a more general bug in the scheduler, or cause regressions on other
test inputs.

rdar://33755881, Part of: llvm.org/PR37262

Differential Revision: https://reviews.llvm.org/D45995

llvm-svn: 331300
2018-05-01 19:26:15 +00:00
Vedant Kumar 4ce143088c [test] Update llc checks for CodeGen/X86/avg.ll
The output of update_llc_test_checks.py on this test file has changed,
so the test file should be updated to minimize source changes in future
patches.

The test updates for this file appear to be limited to relaxations of
the form:

  -; SSE2-NEXT:    movq %rdi, -{{[0-9]+}}(%rsp) # 8-byte Spill
  +; SSE2-NEXT:    movq %rdi, {{[-0-9]+}}(%r{{[sb]}}p) # 8-byte Spill

This was suggested in https://reviews.llvm.org/D45995.

llvm-svn: 330758
2018-04-24 19:20:18 +00:00
Nirav Dave 3264c1bdf6 [DAG, X86] Revert r327197 "Revert r327170, r327171, r327172"
Reland ISel cycle checking improvements after simplifying node id
invariant traversal and correcting typo.

llvm-svn: 327898
2018-03-19 20:19:46 +00:00
Nirav Dave 5f0ab71b62 Revert "[DAG, X86] Revert r327197 "Revert r327170, r327171, r327172""
as it times out building test-suite on PPC.

llvm-svn: 327778
2018-03-17 19:24:54 +00:00
Nirav Dave 982d3a56ea [DAG, X86] Revert r327197 "Revert r327170, r327171, r327172"
Reland ISel cycle checking improvements after simplifying and reducing
node id invariant traversal.

llvm-svn: 327777
2018-03-17 17:42:10 +00:00
Craig Topper e6913ec340 [X86] Post process the DAG after isel to remove vector moves that were added to zero upper bits.
We previously avoided inserting these moves during isel in a few cases which is implemented using a whitelist of opcodes. But it's too difficult to generate a perfect list of opcodes to whitelist. Especially with AVX512F without AVX512VL using 512 bit vectors to implement some 128/256 bit operations. Since isel is done bottoms up, we'd have to check the VT and opcode and subtarget in order to determine whether an EXTRACT_SUBREG would be generated for some operations.

So instead of doing that, this patch adds a post processing step that detects when the moves are unnecesssary after isel. At that point any EXTRACT_SUBREGs would have already been created and appear in the DAG. So then we just need to ensure the input to the move isn't one.

Differential Revision: https://reviews.llvm.org/D44289

llvm-svn: 327724
2018-03-16 17:13:42 +00:00
Craig Topper 80058e30cc [LegalizeTypes] In SplitVecOp_TruncateHelper, use GetSplitVector on the input instead of creating new extract_subvectors.
llvm-svn: 327355
2018-03-13 01:17:40 +00:00
Nirav Dave 042678bd55 Revert: r327172 "Correct load-op-store cycle detection analysis"
r327171 "Improve Dependency analysis when doing multi-node Instruction Selection"
        r328170 "[DAG] Enforce stricter NodeId invariant during Instruction selection"

Reverting patch as NodeId invariant change is causing pathological
increases in compile time on PPC

llvm-svn: 327197
2018-03-10 02:16:15 +00:00
Nirav Dave d668f69ee7 Improve Dependency analysis when doing multi-node Instruction Selection
Relanding after fixing NodeId Invariant.

Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.

As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.

Reviewers: craig.topper, bogner

Subscribers: llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D41293

llvm-svn: 327171
2018-03-09 20:57:42 +00:00
Simon Pilgrim ca38c762e4 [TargetLowering] Add vector BITCAST support to SimplifyDemandedVectorElts
Notably helps cleanup after legalization of vector types

Differential Revision: https://reviews.llvm.org/D43674

llvm-svn: 326838
2018-03-06 22:32:01 +00:00
Geoff Berry a2b9011290 Re-enable "[MachineCopyPropagation] Extend pass to do COPY source forwarding"
Re-enable commit r323991 now that r325931 has been committed to make
MachineOperand::isRenamable() check more conservative w.r.t. code
changes and opt-in on a per-target basis.

llvm-svn: 326208
2018-02-27 16:59:10 +00:00
Craig Topper 5c980eba47 [X86] Don't use getZExtValue when we have no idea how large the input elements are.
llvm-svn: 326066
2018-02-26 04:43:24 +00:00
Craig Topper 79d189f597 [X86] Remove VT.isSimple() check from detectAVGPattern.
Which types are considered 'simple' is a function of the requirements of all targets that LLVM supports. That shouldn't directly affect what types we are able to handle. The remainder of this code checks that the number of elements is a power of 2 and takes care of splitting down to a legal size.

llvm-svn: 326063
2018-02-26 02:16:31 +00:00
Chandler Carruth a1d6107b14 [DAG, X86] Revert r324797, r324491, and r324359.
Sadly, r324359 caused at least PR36312. There is a patch out for review
but it seems to be taking a bit and we've already had these crashers in
tree for too long. We're hitting this PR in real code now and are
blocked on shipping new compilers as a consequence so I'm reverting us
back to green.

Sorry for the churn due to the stacked changes that I had to revert. =/

llvm-svn: 325420
2018-02-17 02:26:25 +00:00
Nirav Dave 27721e8617 [DAG, X86] Improve Dependency analysis when doing multi-node
Instruction Selection

Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.

As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.

Reviewers: craig.topper, bogner

Subscribers: llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D41293

llvm-svn: 324359
2018-02-06 16:14:29 +00:00
Craig Topper 83b0a98902 [X86] Use vmovdqu64/vmovdqa64 for unmasked integer vector stores for consistency with loads.
Previously we used 64 for vXi64 stores and 32 for everything else. This change uses 64 for everything just like do for loads.

llvm-svn: 322820
2018-01-18 07:44:09 +00:00