now that we have a correct and cached subtarget specific to the
function.
Also, finish providing a cached per-function subtarget in the core
LLVMTargetMachine -- that layer hadn't switched over yet.
The only use of the TargetMachine was to re-lookup a subtarget for
a particular function to work around the fact that TTI was immutable.
Now that it is per-function and we haved a cached subtarget, use it.
This still leaves a few interfaces with real warts on them where we were
passing Function objects through the TTI interface. I'll remove these
and clean their usage up in subsequent commits now that this isn't
necessary.
llvm-svn: 227738
intermediate TTI implementation template and instead query up to the
derived class for both the TargetMachine and the TargetLowering.
Most of the derived types had a TLI cached already and there is no need
to store a less precisely typed target machine pointer.
This will in turn make it much cleaner to look up the TLI via
a per-function subtarget instead of the generic subtarget, and it will
pave the way toward pulling the subtarget used for unroll preferences
into the same form once we are *always* using the function to look up
the correct subtarget.
llvm-svn: 227737
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.
This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.
I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.
With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.
llvm-svn: 227685
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
type (in addition to the memory type).
The *LoadExt* legalization handling used to only have one type, the
memory type. This forced users to assume that as long as the extload
for the memory type was declared legal, and the result type was legal,
the whole extload was legal.
However, this isn't always the case. For instance, on X86, with AVX,
this is legal:
v4i32 load, zext from v4i8
but this isn't:
v4i64 load, zext from v4i8
Whereas v4i64 is (arguably) legal, even without AVX2.
Note that the same thing was done a while ago for truncstores (r46140),
but I assume no one needed it yet for extloads, so here we go.
Calls to getLoadExtAction were changed to add the value type, found
manually in the surrounding code.
Calls to setLoadExtAction were mechanically changed, by wrapping the
call in a loop, to match previous behavior. The loop iterates over
the MVT subrange corresponding to the memory type (FP vectors, etc...).
I also pulled neighboring setTruncStoreActions into some of the loops;
those shouldn't make a difference, as the additional types are illegal.
(e.g., i128->i1 truncstores on PPC.)
No functional change intended.
Differential Revision: http://reviews.llvm.org/D6532
llvm-svn: 225421
shim between the TargetTransformInfo immutable pass and the Subtarget
via the TargetMachine and Function. Migrate a single call from
BasicTargetTransformInfo as an example and provide shims where TargetMachine
begins taking a Function to determine the subtarget.
No functional change.
llvm-svn: 218004
The default implementation of getCmpSelInstrCost, which provides the cost of
icmp/fcmp/select instructions, did not deal sensibly with illegal vector types
that were scalarized. We'd ask for the legalization cost of the vector type,
which would return something like (4, f64) given an input of <4 x double>, and
we'd then check the TLI status of the ISD opcode on that scalar type. This would
result in querying (ISD::VSELECT, f64), for example. Amusingly enough,
ISD::VSELECT on scalar types is marked as Legal by default (as with most other
operations), and most backends never change this because VSELECT is never
generated on scalars. However, seeing the resulting operation as Legal, we'd
neglect to add the scalarization cost before returning. The result is that we'd
grossly under-estimate the cost of cmps/selects on illegal vector types.
Now, if type legalization clearly results in scalarization, we skip the early
return and add the scalarization cost.
llvm-svn: 217859
"Unroll" is not the appropriate name for this variable. Clang already uses
the term "interleave" in pragmas and metadata for this.
Differential Revision: http://reviews.llvm.org/D5066
llvm-svn: 217528
This removes static initializers from the backends which generate this data, and also makes this struct match the other Tablegen generated structs in behaviour
Reviewed by Andy Trick and Chandler C
llvm-svn: 216919
This patch adds support to recognize division by uniform power of 2 and modifies the cost table to vectorize division by uniform power of 2 whenever possible.
Updates Cost model for Loop and SLP Vectorizer.The cost table is currently only updated for X86 backend.
Thanks to Hal, Andrea, Sanjay for the review. (http://reviews.llvm.org/D4971)
llvm-svn: 216371
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
llvm-svn: 213973
This patch adds support to recognize patterns such as fadd,fsub,fadd,fsub.../add,sub,add,sub... and
vectorizes them as vector shuffles if they are profitable.
These patterns of vector shuffle can later be converted to instructions such as addsubpd etc on X86.
Thanks to Arnold and Hal for the reviews. http://reviews.llvm.org/D4015
llvm-svn: 211339
The old method used by X86TTI to determine partial-unrolling thresholds was
messy (because it worked by testing target features), and also would not
correctly identify the target CPU if certain target features were disabled.
After some discussions on IRC with Chandler et al., it was decided that the
processor scheduling models were the right containers for this information
(because it is often tied to special uop dispatch-buffer sizes).
This does represent a small functionality change:
- For generic x86-64 (which uses the SB model and, thus, will get some
unrolling).
- For AMD cores (because they still currently use the SB scheduling model)
- For Haswell (based on benchmarking by Louis Gerbarg, it was decided to bump
the default threshold to 50; we're working on a test case for this).
Otherwise, nothing has changed for any other targets. The logic, however, has
been moved into BasicTTI, so other targets may now also opt-in to this
functionality simply by setting LoopMicroOpBufferSize in their processor
model definitions.
llvm-svn: 208289
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
llvm-svn: 206837
BasicTTI::getMemoryOpCost must explicitly check for non-simple types; setting
AllowUnknown=true with TLI->getSimpleValueType is not sufficient because, for
example, non-power-of-two vector types return non-simple EVTs (not MVT::Other).
llvm-svn: 206150
When a vector type legalizes to a larger vector type, and the target does not
support the associated extending load (or truncating store), then legalization
will scalarize the load (or store) resulting in an associated scalarization
cost. BasicTTI::getMemoryOpCost needs to account for this.
Between this, and r205487, PowerPC on the P7 with VSX enabled shows:
MultiSource/Benchmarks/PAQ8p/paq8p: 43% speedup
SingleSource/Benchmarks/BenchmarkGame/puzzle: 51% speedup
SingleSource/UnitTests/Vectorizer/gcc-loops 28% speedup
(some of these are new; some of these, such as PAQ8p, just reverse regressions
that VSX support would trigger)
llvm-svn: 205495
For an cast (extension, etc.), the currently logic predicts a low cost if the
associated operation (keyed on the destination type) is legal (or promoted).
This is not true when the number of values required to legalize the type is
changing. For example, <8 x i16> being sign extended by <8 x i32> is not
generically cheap on PPC with VSX, even though sign extension to v4i32 is
legal, because two output v4i32 values are required compared to the single
v8i16 input value, and without custom logic in the target, this conversion will
scalarize.
llvm-svn: 205487
the legalization cost must be included to get an accurate
estimation of the total cost of the scalarized vector.
The inaccurate cost triggered unprofitable SLP vectorization on
32-bit X86.
Summary:
Include legalization overhead when computing scalarization cost
Reviewers: hfinkel, nadav
CC: chandlerc, rnk, llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2992
llvm-svn: 203509
the stack of the analysis group because they are all immutable passes.
This is made clear by Craig's recent work to use override
systematically -- we weren't overriding anything for 'finalizePass'
because there is no such thing.
This is kind of a lame restriction on the API -- we can no longer push
and pop things, we just set up the stack and run. However, I'm not
invested in building some better solution on top of the existing
(terrifying) immutable pass and legacy pass manager.
llvm-svn: 203437
Upcoming SLP vectorization improvements will want to be able to estimate costs
of horizontal reductions. Add infrastructure to support this.
We model reductions as a series of (shufflevector,add) tuples ultimately
followed by an extractelement. For example, for an add-reduction of <4 x float>
we could generate the following sequence:
(v0, v1, v2, v3)
\ \ / /
\ \ /
+ +
(v0+v2, v1+v3, undef, undef)
\ /
((v0+v2) + (v1+v3), undef, undef)
%rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
%rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
%r = extractelement <4 x float> %bin.rdx8, i32 0
This commit adds a cost model interface "getReductionCost(Opcode, Ty, Pairwise)"
that will allow clients to ask for the cost of such a reduction (as backends
might generate more efficient code than the cost of the individual instructions
summed up). This interface is excercised by the CostModel analysis pass which
looks for reduction patterns like the one above - starting at extractelements -
and if it sees a matching sequence will call the cost model interface.
We will also support a second form of pairwise reduction that is well supported
on common architectures (haddps, vpadd, faddp).
(v0, v1, v2, v3)
\ / \ /
(v0+v1, v2+v3, undef, undef)
\ /
((v0+v1)+(v2+v3), undef, undef, undef)
%rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
%rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
%bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
%rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
%rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx.1 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
%r = extractelement <4 x float> %bin.rdx.1, i32 0
llvm-svn: 190876
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 190542
Revert unintentional commit (of an unreviewed change).
Original commit message:
Add getUnrollingPreferences to TTI
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 189566
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 189565
...so that it can be used for z too. Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.
The pass is opt-in because at the moment it only handles sqrt.
llvm-svn: 189097
This adds a llvm.copysign intrinsic; We already have Libfunc recognition for
copysign (which is turned into the FCOPYSIGN SDAG node). In order to
autovectorize calls to copysign in the loop vectorizer, we need a corresponding
intrinsic as well.
In addition to the expected changes to the language reference, the loop
vectorizer, BasicTTI, and the SDAG builder (the intrinsic is transformed into
an FCOPYSIGN node, just like the function call), this also adds FCOPYSIGN to a
few lists in LegalizeVector{Ops,Types} so that vector copysigns can be
expanded.
In TargetLoweringBase::initActions, I've made the default action for FCOPYSIGN
be Expand for vector types. This seems correct for all in-tree targets, and I
think is the right thing to do because, previously, there was no way to generate
vector-values FCOPYSIGN nodes (and most targets don't specify an action for
vector-typed FCOPYSIGN).
llvm-svn: 188728
All libm floating-point rounding functions, except for round(), had their own
ISD nodes. Recent PowerPC cores have an instruction for round(), and so here I'm
adding ISD::FROUND so that round() can be custom lowered as well.
For the most part, this is straightforward. I've added an intrinsic
and a matching ISD node just like those for nearbyint() and friends. The
SelectionDAG pattern I've named frnd (because ISD::FP_ROUND has already claimed
fround).
This will be used by the PowerPC backend in a follow-up commit.
llvm-svn: 187926
Merge consecutive if-regions if they contain identical statements.
Both transformations reduce number of branches. The transformation
is guarded by a target-hook, and is currently enabled only for +R600,
but the correctness has been tested on X86 target using a variety of
CPU benchmarks.
Patch by: Mei Ye
llvm-svn: 187278
Address calculation for gather/scather in vectorized code can incur a
significant cost making vectorization unbeneficial. Add infrastructure to add
cost.
Tests and cost model for targets will be in follow-up commits.
radar://14351991
llvm-svn: 186187
This fixes an oversight that Intrinsic::nearbyint was not being mapped to
ISD::FNEARBYINT (thus fixing the over-optimistic cost we were assigning to
nearbyint calls for some targets).
llvm-svn: 185783
Account for the cost of scaling factor in Loop Strength Reduce when rating the
formulae. This uses a target hook.
The default implementation of the hook is: if the addressing mode is legal, the
scaling factor is free.
<rdar://problem/13806271>
llvm-svn: 183045