When the origin of a shape is an extent tensor the operation `get_extent` can be
lowered directly to `extract_element`.
This choice circumvents the necessity to materialize the shape in memory.
Differential Revision: https://reviews.llvm.org/D82645
When the shape is derived from a tensor argument the shape extent can be derived
directly from that tensor with `std.dim`.
This lowering pattern circumvents the necessity to materialize the shape in
memory.
Differential Revision: https://reviews.llvm.org/D82644
The error message in the `std.constant` verifier for function-typed constants
had the name of the undefined function hardcoded to `bar`. Report the actual
name instead.
Differential Revision: https://reviews.llvm.org/D82666
This test largely predates MLIR testing guidelines. Update it to match the
guidelines. In particular, avoid pattern-matching SSA value names, avoid
unnecessary CHECK-NEXT, relax assumptions about the form of SSA names.
Value-returning operations are still matched agaist _any_ name in order to
check that the operation indeed produces values.
Differential Revision: https://reviews.llvm.org/D82656
Rationale:
In general, passing "fastmath" from MLIR to LLVM backend is not supported, and even just providing such a feature for experimentation is under debate. However, passing fine-grained fastmath related attributes on individual operations is generally accepted. This CL introduces an option to instruct the vector-to-llvm lowering phase to annotate floating-point reductions with the "reassociate" fastmath attribute, which allows the LLVM backend to use SIMD implementations for such constructs. Oher lowering passes can start using this mechanism right away in cases where reassociation is allowed.
Benefit:
For some microbenchmarks on x86-avx2, speedups over 20 were observed for longer vector (due to cleaner, spill-free and SIMD exploiting code).
Usage:
mlir-opt --convert-vector-to-llvm="reassociate-fp-reductions"
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D82624
To be able to have more meaningful performance out of workloadsi going through
the vulkan-runner we need to use buffers from GPU device memory as access to
system memory is significantly slower for GPU with dedicated memory. This adds
code to do a copy through staging buffer as GPU memory cannot always be mapped
on the host.
Differential Revision: https://reviews.llvm.org/D82504
Implemented conversion for `spv.BitReverse` and `spv.BitCount`. Since ODS
generates builders in a different way for LLVM dialect intrinsics, I
added attributes to build method in `DirectConversionPattern` class. The
tests for these ops are in `bitwise-ops-to-llvm.mlir`.
Differential Revision: https://reviews.llvm.org/D82286
Add a pass to rewrite sequential chains of `spirv::CompositeInsert`
operations into `spirv::CompositeConstruct` operations.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D82198
This patch add support for 'spv.CopyMemory'. The following changes are
introduced:
- 'CopyMemory' op is added to SPIRVOps.td.
- Custom parse and print methods are introduced.
- A few Roundtripping tests are added.
Differential Revision: https://reviews.llvm.org/D82384
Summary: The patch fixes an off by one error in the method collapseParallelLoops. It ensures the same normalized bound is used for the computation of the division and the remainder.
Reviewers: herhut
Reviewed By: herhut
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82634
Conversions of allocation-related operations in Standard-to-LLVM need
declarations of "malloc" and "free" (or equivalents). They use locally created
OpBuilders pointed at the module level to declare these functions if necessary.
This is poorly compatible with the pattern infrastructure that is unaware of
new operations being created. Update the insertion point of the main rewriter
instead.
Differential Revision: https://reviews.llvm.org/D82649
Initially, unranked memref descriptors in the LLVM dialect were designed only
to be passed into functions. An assertion was guarding against returning
unranked memrefs from functions in the standard-to-LLVM conversion. This is
insufficient for functions that wish to return an unranked memref such that the
caller does not know the rank in advance, and hence cannot allocate the
descriptor and pass it in as an argument.
Introduce a calling convention for returning unranked memref descriptors as
follows. An unranked memref descriptor always points to a ranked memref
descriptor stored on stack of the current function. When an unranked memref
descriptor is returned from a function, the ranked memref descriptor it points
to is copied to dynamically allocated memory, the ownership of which is
transferred to the caller. The caller is responsible for deallocating the
dynamically allocated memory and for copying the pointed-to ranked memref
descriptor onto its stack.
Provide default lowerings for std.return, std.call and std.indirect_call that
maintain the conversion defined above.
This convention is additionally exercised by a runtime test to guard against
memory errors.
Differential Revision: https://reviews.llvm.org/D82647
Using fully qualified names wherever possible avoids ambiguous class and function names. This is a follow-up to D82371.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D82471
When there is a mix of affine load/store and non-affine operations (e.g. std.load, std.store),
affine-loop-fusion ignores the present of non-affine ops, thus changing the program semantics.
E.g. we have a program of three affine loops operating on the same memref in which one of them uses std.load and std.store, as follows.
```
affine.for
affine.store %1
affine.for
std.load %1
std.store %1
affine.for
affine.load %1
affine.store %1
```
affine-loop-fusion will produce the following result which changed the program semantics:
```
affine.for
std.load %1
std.store %1
affine.for
affine.store %1
affine.load %1
affine.store %1
```
This patch is to fix the above problem by checking non-affine users of the memref that are between the source and destination nodes of interest.
Differential Revision: https://reviews.llvm.org/D82158
Lower `shape.rank` to standard dialect.
A shape's size is the same as the extent of the first and only dimension of the
`tensor<?xindex>` it is represented by.
Differential Revision: https://reviews.llvm.org/D82080
Replace any `rank(shape_of(tensor))` that relies on a ranked tensor with the
corresponding constant `const_size`.
Differential Revision: https://reviews.llvm.org/D82077
Summary: The patch optimizes the tiling of parallel loops with static bounds if the number of loop iterations is an integer multiple of the tile size.
Reviewers: herhut, ftynse, bondhugula
Reviewed By: herhut, ftynse
Subscribers: bondhugula, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82003
This patch introduces conversion patterns for `spv.module` and `spv._module_end`.
SPIR-V module is converted into `ModuleOp`. This will play a role of enclosing
scope to LLVM ops. At the moment, SPIR-V module attributes (such as memory model,
etc) are ignored.
Differential Revision: https://reviews.llvm.org/D82468
This revision adds a new support header, InterfaceSupport, to contain various generic bits of functionality for implementing "Interfaces". Interfaces embody a mechanism for attaching concept-based polymorphism to a type system. With this refactoring a new InterfaceMap type is added to allow for efficient interface lookups without going through an indirect call. This should provide a decent performance speedup without changing the size of AbstractOperation.
In a future revision, this functionality will also be used to bring Interface like functionality to Attributes and Types.
Differential Revision: https://reviews.llvm.org/D81882
Note that this does not mean that check-mlir will run check-mlir-integration
tests for all configurations. You still need to do a set up with the flag
MLIR_INCLUDE_INTEGRATION_TESTS set to ON in order to activate the integration test.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D82413
Use vector compares for the 1-D case. This approach scales much better
than generating insertion operations, and exposes SIMD directly to backend.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D82402
Summary: The Pass class exists in both the mlir and the llvm namespaces. Use the fully qualified class name to avoid any ambiguities.
Reviewers: rriddle
Reviewed By: rriddle
Subscribers: mehdi_amini, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82371
Introduced `llvm.intr.bitreverse` and `llvm.intr.ctpop` LLVM bit
intrinsics to LLVM dialect. These intrinsics help with SPIR-V to
LLVM conversion, allowing a direct mapping from `spv.BitReverse`
and `spv.BitCount` respectively. Tests are added to `roundtrip.mlir`
and `llvm-intrinsics.mlir`.
Differential Revision: https://reviews.llvm.org/D82285
This patch adds a new cli argument to the automation script to generate
a report of the current SPIRV spec instruction coverage. It dumps to the
standard output a YAML string with the coverage information.
Differential Revision: https://reviews.llvm.org/D82006
This patch provides an implementation for `spv.func` conversion. The pattern
is populated in a separate method added to the pass. At the moment, the type
signature conversion only includes the supported types. The conversion pattern
also matches SPIR-V function control attributes to LLVM function attributes.
Those are modelled as `passthrough` attributes in LLVM dialect. The following
mapping are used:
- None: no attributes passed
- Inline: `alwaysinline` seems to be the right equivalent (`inlinehint` is
semantically weaker in my opinion)
- DontInline: `noinline`
- Pure and Const: I think those can be modelled as `readonly` and `readnone`
attributes respectively.
Also, 2 patterns added for return ops conversion (`spv.Return` for void return
and `spv.ReturnValue` for a single value return).
Differential Revision: https://reviews.llvm.org/D81931
Add option to filter which op the OpDefinitionsGen run on. This enables having multiple ops together in the same TD file but generating different CC files for them (useful if one wants to use multiclasses or split out 1 dialect into multiple different libraries). There is probably more general query here (e.g., split out all ops that don't have a verify method, or that are commutative) but filtering based on op name (e.g., test.a_op) seemed a reasonable start and didn't require inventing a query specification mechanism here.
Differential Revision: https://reviews.llvm.org/D82319
Summary:
Currently, the TableGen rewrite generates redundant native calls in MLIR DRR files. This is a problem as some native calls may involve significant computations (e.g. when performing constant propagation where every values in a large tensor is touched).
The pattern was as follow:
```c++
if (native-call(args)) tblgen_attrs.emplace_back(rewriter, attribute, native-call(args))
```
The replacement pattern compute `native-call(args)` once and then use it both in the `if` condition and the `emplace_back` call.
Differential Revision: https://reviews.llvm.org/D82101
This patch extends the AccessChainOp index type handling to be able to deal with
all Integer type indices (i.e., all bit-widths and signedness symantics).
There were two ways of achieving this:
1- Backward compatible: The new way of handling the indices will assume that
an index type is i32 by default if not specified in the assembly format,
this way all the old tests would pass correctly.
2- Enforce the format: This unifies the spv.AccessChain Op format and all the old
tests had to be updated to reflect this change or else they fail.
I picked option-2 to unify the Op format and avoid having optional index-type fields
that can lead to somewhat confusing tests format and multiple representations for
the same Op with undocumented assumption that an index is i32 unless stated.
Nonetheless, reverting to option-1 should be straightforward if preferred or needed.
Differential Revision: https://reviews.llvm.org/D81763
Example of Matmul implementation in linalg.generic operation contained few mistakes that can puzzle new startes when trying to run the example.
Differential Revision: https://reviews.llvm.org/D82289
The patch makes the index type lowering of the GPU to NVVM/ROCDL
conversion configurable. It introduces a pass option that controls the
bitwidth used when lowering index computations.
Differential Revision: https://reviews.llvm.org/D80285
Summary:
We already had a parallel loop specialization pass that is used to
enable unrolling and consecutive vectorization by rewriting loops
whose bound is defined as a min of a constant and a dynamic value
into a loop with static bound (the constant) and the minimum as
bound, wrapped into a conditional to dispatch between the two.
This adds the same rewriting for for loops.
Differential Revision: https://reviews.llvm.org/D82189
Avoid using max on unsigned constants, in case the caller is using 0 we
end up with:
warning: taking the max of unsigned zero and a value is always equal to the other value [-Wmax-unsigned-zero]
Instead we can just use native TableGen to fold the comparison here.
Subview operations are not natively supported downstream in the spirv path.
This change allows removing subview when used by vector transfer the same way
we already do it when they are used by LoadOp/StoreOp
Differential Revision: https://reviews.llvm.org/D82106
Allow lhs and rhs to have different type than accumulator/destination. Some
hardware like GPUs support natively operations like uint8xuint8xuint32.
Differential Revision: https://reviews.llvm.org/D82069
Use direct vector constants for the 1-D case. This approach
scales much better than generating elaborate insertion operations
that are eventually folded into a constant. We could of course
generalize the 1-D case to higher ranks, but this simplification
already helps in scaling some microbenchmarks that would formerly
crash on the intermediate IR length.
Reviewed By: reidtatge
Differential Revision: https://reviews.llvm.org/D82144
Lower `shape.shape_of` to standard dialect.
This lowering supports statically and dynamically shaped tensors.
Support for unranked tensors will be added as part of the lowering to `scf`.
Differential Revision: https://reviews.llvm.org/D82098
Summary:
With this change, a function argument attribute of the form
"llvm.align" = <int> will be translated to the corresponding align
attribute in LLVM by the ModuleConversion.
Differential Revision: https://reviews.llvm.org/D82161
All class derived from `edsc::NestedBuilder` in core MLIR have been replaced
with alternatives based on OpBuilder+callbacks. The *Builder EDSC
infrastructure has been deprecated. Remove edsc::NestedBuilder.
This completes the "structured builders" refactoring.
Differential Revision: https://reviews.llvm.org/D82128
Callback-based constructions of blocks where the body is populated in the same
function as the block creation is a natural extension of callback-based loop
construction. They provide more concise and simple APIs than EDSC BlockBuilder
at less than 20% infrastructural code cost, and are compatible with
ScopedContext. BlockBuilder, Blockhandle and related functionality has been
deprecated, remove them.
Differential Revision: https://reviews.llvm.org/D82015
Callback-based loop construction, with loop bodies being constructed during the
construction of the parent op using a function, is now fully supported by the
core infrastructure. This provides almost the same level of brevity as EDSC
LoopBuilder at less than 30% infrastructural code cost. Functional equivalents
compatible with EDSC ScopedContext are implemented on top of the main builders.
LoopBuilder and related functionality has been deprecated, remove it.
Differential Revision: https://reviews.llvm.org/D81874
This patch adds the `default_triple` feature to MLIR test suite.
This feature was added to LLVM in d178f4fc8 in order to be able to
run the LLVM tests without having the host targets configured in.
With this change, `ninja check-mlir` passes without the host
target, i.e. this config:
cmake ../llvm -DLLVM_TARGETS_TO_BUILD="" -DLLVM_DEFAULT_TARGET_TRIPLE="" -DLLVM_ENABLE_PROJECTS=mlir -GNinja
Differential Revision: https://reviews.llvm.org/D82142
This revision removes the TypeConverter parameter passed to the apply* methods, and instead moves the responsibility of region type conversion to patterns. The types of a region can be converted using the 'convertRegionTypes' method, which acts similarly to the existing 'applySignatureConversion'. This method ensures that all blocks within, and including those moved into, a region will have the block argument types converted using the provided converter.
This has the benefit of making more of the legalization logic controlled by patterns, instead of being handled explicitly by the driver. It also opens up the possibility to support multiple type conversions at some point in the future.
This revision also adds a new utility class `FailureOr<T>` that provides a LogicalResult friendly facility for returning a failure or a valid result value.
Differential Revision: https://reviews.llvm.org/D81681
We recently introduced support for building loops or loop nests using callbacks
that populate the body. Use these in the tutorial instead of setInsertionPoint
manipulations.
Differential Revision: https://reviews.llvm.org/D82104
Existing implementation of affine loop nest builders relies on EDSC
ScopedContext, which is not used pervasively. Provide a common OpBuilder-based
helper function to construct a perfect nest of affine loops with the body of
the innermost loop populated by a callback. Use this function to implement the
EDSC version.
Affine "for" loops differ from SCF "for" loops by (1) not allowing to yield
values and (2) supporting short-hand form for constant bounds, which justifies
a separate implementation of the loop nest builder for the same of simplicity.
Differential Revision: https://reviews.llvm.org/D81955
Traditionally patterns have always had the root operation kind hardcoded to a specific operation name. This has worked well for quite some time, but it has certain limitations that make it undesirable. For example, some lowering have the same implementation for many different operations types with a few lowering entire dialects using the same pattern implementation. This problem has led to several "solutions":
a) Provide a template implementation to the user so that they can instantiate it for each operation combination, generally requiring the inclusion of the auto-generated operation definition file.
b) Use a non-templated pattern that allows for providing the name of the operation to match
- No one ever does this, because enumerating operation names can be cumbersome and so this quickly devolves into solution a.
This revision removes the restriction that patterns have a hardcoded root type, and allows for a class patterns that could match "any" operation type. The major downside of root-agnostic patterns is that they make certain pattern analyses more difficult, so it is still very highly encouraged that an operation specific pattern be used whenever possible.
Differential Revision: https://reviews.llvm.org/D82066
This class enables for abstracting more of the details for the rewrite process, and will allow for clients to apply specific cost models to the pattern list. This allows for DialectConversion and the GreedyPatternRewriter to share the same underlying matcher implementation. This also simplifies the plumbing necessary to support dynamic patterns.
Differential Revision: https://reviews.llvm.org/D81985
muladd can have differenti types for lhs/rhs and acc/destination. Change
verifier and update the test to use supported example.
Differential Revision: https://reviews.llvm.org/D82042
Summary:
The "i1" (viz. bool) type does not have a proper equivalent on the "C"
size. So, to avoid any ABIs issues, we simply use print_i32 on an i32
value of one or zero for true and false. This has the added advantage
that one less function needs to be implemented when porting the runtime
support library.
Reviewers: ftynse, bkramer, nicolasvasilache
Reviewed By: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82048
Summary:
Fixed build of D81618
Add a pattern for expanding tanh op into exp form.
A `tanh` is expanded into:
1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
2) exp^{2x}-1 / exp^{2x}+1 , if x < 0.
Differential Revision: https://reviews.llvm.org/D82040
Summary:
This is to provide a utility to remove unsupported constraints or for
pipelines that happen to receive these but cannot lower them due to not
supporting assertions.
Differential Revision: https://reviews.llvm.org/D81560
The ScopedBuilder class in EDSC is being gradually phased out in favor of core
OpBuilder-based helpers with callbacks. Provide helper functions that are
compatible with `edsc::ScopedContext` and can be used to create and populate
blocks using callbacks that take block arguments as callback arguments. This
removes the need for `edsc::BlockHandle`, forward-declaration of `Value`s used
for block arguments and the tag `edsc::Append` class, leading to noticable
reduction in the verbosity of the code using helper functions.
Remove "eager mode" construction tests that are only relevant to the
`BlockBuilder`-based approach.
`edsc::BlockHandle` and `edsc::BlockBuilder` are now deprecated and will be
removed soon.
Differential Revision: https://reviews.llvm.org/D82008
This patch adjust the load/store matrix intrinsics, formerly known as
llvm.matrix.columnwise.load/store, to improve the naming and allow
passing of extra information (volatile).
The patch performs the following changes:
* Rename columnwise.load/store to column.major.load/store. This is more
expressive and also more in line with the naming in Clang.
* Changes the stride arguments from i32 to i64. The stride can be
larger than i32 and this makes things more uniform with the way
things are handled in Clang.
* A new boolean argument is added to indicate whether the load/store
is volatile. The lowering respects that when emitting vector
load/store instructions
* MatrixBuilder is updated to require both Alignment and IsVolatile
arguments, which are passed through to the generated intrinsic. The
alignment is set using the `align` attribute.
The changes are grouped together in a single patch, to have a single
commit that breaks the compatibility. We probably should be fine with
updating the intrinsics, as we did not yet officially support them in
the last stable release. If there are any concerns, we can add
auto-upgrade rules for the columnwise intrinsics though.
Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor, LuoYuanke, nicolasvasilache, rjmccall, ftynse
Reviewed By: anemet, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D81472
Setup declarative rewrite rules to lower the `shape` dialect to the `std`
dialect with two exemplary rules for `from/to_extent_tensor`.
Differential Revision: https://reviews.llvm.org/D82022
- This will allow calling these functions from Op's that support this interface (like FuncOp) directly:
```
FuncOp func = ...
func.isPrivate()
```
Differential Revision: https://reviews.llvm.org/D82060
We previously weren't properly updating the SCC iterator when nodes were removed, leading to asan failures in certain situations. This commit adds a CallGraphSCC class and defers operation deletion until inlining has finished.
Differential Revision: https://reviews.llvm.org/D81984
Summary:
- Define the MatrixTimesScalar operation and add roundtrip tests.
- Added a new base class for matrix-specific operations to avoid invalid operands type mismatch check.
- Created a separate Matrix arithmetic operations td file to add more operations in the future.
- Augmented the automatically generated verify method to print more fine-grained error messages.
- Made minor Updates to the matrix type tests.
Reviewers: antiagainst, rriddle, mravishankar
Reviewed By: antiagainst
Subscribers: mehdi_amini, jpienaar, shauheen, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, bader, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D81677
Added support of simple logical ops: `LogicalAnd`, `LogicalOr`,
`LogicalEqual` and `LogicalNotEqual`. Added a missing conversion
for `UMod` op.
Also, implemented SPIR-V cast ops conversion. There are 4 simple
case where there is a clear equivalent in LLVM (e.g. `ConvertFToS`
is `fptosi`). For `FConvert`, `SConvert` and `UConvert` we
distinguish between truncation and extension based on the bit
width of the operand.
Differential Revision: https://reviews.llvm.org/D81812
Summary:
Parallel loop tiling did not properly compute the updated loop
indices when tiling, which lead to wrong results.
Differential Revision: https://reviews.llvm.org/D82013
Summary:
Two integration tests focused on i1 vectors, which exposed omissions
in the llvm backend which have since then been fixed. Note that this also
exposed an inaccuracy for print_i1 which has been fixed in this CL:
for a pure C ABI, int should be used rather than bool.
Reviewers: nicolasvasilache, ftynse, reidtatge, andydavis1, bkramer
Reviewed By: bkramer
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D81957
This patch changes the casing of MLIRGPUtoSPIRVTransforms
to be consistent with other transforms libraries.
Differential Revision: https://reviews.llvm.org/D81902
Implement the missing lowering from `std.dim` to the LLVM dialect in case of a
dynamic dimension.
Differential Revision: https://reviews.llvm.org/D81834
Recent work has introduced support for constructing loops via `::build` with
callbacks that construct loop bodies using only the core OpBuilder. This is now
supported on all loop types that Linalg lowers to. Refactor LoopNestBuilder in
Linalg to rely on this functionality instead of using a custom EDSC-based
approach to creating loop nests.
The specialization targeting parallel loops is also simplified by factoring out
the recursive call into a separate static function and considering only two
alternatives: top-level loop is parallel or sequential.
This removes the last remaining in-tree use of edsc::LoopBuilder, which is now
deprecated and will be removed soon.
Differential Revision: https://reviews.llvm.org/D81873
Similarly to `scf::ForOp`, introduce additional `function_ref` arguments to
`::build` functions of SCF `ParallelOp` and `ReduceOp`. The provided functions
will be called to construct the body of the respective operations while
constructing the operation itself. Exercise them in LoopUtils.
Differential Revision: https://reviews.llvm.org/D81872
Summary:
This revision replaces MatmulOp, now that DRR rules have been dropped.
This revision also fixes minor parsing bugs and a plugs a few holes to get e2e paths working (e.g. library call emission).
During the replacement the i32 version had to be dropped because only the EDSC operators +, *, etc support type inference.
Deciding on a type-polymorphic behavior, and implementing it, is left for future work.
Reviewers: aartbik
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D81935
Fix memref region compute for 0-d memref accesses in certain cases (when
there are loops surrounding such 0-d accesses).
Differential Revision: https://reviews.llvm.org/D81792
- Modify HasParent trait to allow one of several op's as a parent -
- Expose this trait in the ODS framework using the ParentOneOf<> trait.
Differential Revision: https://reviews.llvm.org/D81880
Summary: FileLineColLoc allows the column and line to be zero to represent unknown column and/or unknown line/column information. However, SourceMgr::FindLocForLineAndColumn treats line 0 and col 0 valid and pointing to the first line and col, respectively. To adapt this mismatch in semantics, we explicitly check line/col being zeros in SourceMgrDiagnosticHandler::convertLocToSMLoc
Differential Revision: https://reviews.llvm.org/D80258
This allows for passing a lambda to addDynamicallyLegalDialect without needing to explicit wrap with Optional<DynamicLegalityCallbackFn>.
Differential Revision: https://reviews.llvm.org/D81680
It is quite common for the same type to be converted many types throughout the conversion process, and there isn't any good reason why we aren't caching that result. Especially given that we currently use identity conversion to signify legality. This revision also adds a few additional helpers to TypeConverter.
Differential Revision: https://reviews.llvm.org/D81679
This revision replaces MatmulOp, now that DRR rules have been dropped.
This revision also fixes minor parsing bugs and a plugs a few holes to get e2e paths working (e.g. library call emission).
During the replacement the i32 version had to be dropped because only the EDSC operators +, *, etc support type inference.
Deciding on a type-polymorphic behavior, and implementing it, is left for future work.
Differential Revision: https://reviews.llvm.org/D79762
Summary:
Previous submit of new tests accidentally made this ON.
The tests should be opt-in.
To build with MLIR integration tests enabled, pass the following
cmake .... \
-DMLIR_INCLUDE_INTEGRATION_TESTS=ON \
....
Reviewers: mehdi_amini
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D81878
This is intended to avoid programming mistake where a temporary OpOperand is
created, for example:
for (OpOperand user : result.getUsers()) {
It can be confusing for the user, in particular since in MLIR most classes are intended to
be copied around by value while they have reference semantics.
Differential Revision: https://reviews.llvm.org/D81815
This reverts commit 32c757e4f8.
Broke the build bot:
******************** TEST 'MLIR :: Examples/standalone/test.toy' FAILED ********************
[...]
/tmp/ci-KIMiRFcVZt/lib/libMLIRLinalgToLLVM.a(LinalgToLLVM.cpp.o): In function `(anonymous namespace)::ConvertLinalgToLLVMPass::runOnOperation()':
LinalgToLLVM.cpp:(.text._ZN12_GLOBAL__N_123ConvertLinalgToLLVMPass14runOnOperationEv+0x100): undefined reference to `mlir::populateExpandTanhPattern(mlir::OwningRewritePatternList&, mlir::MLIRContext*)'
Summary:
This CL introduces an integration test directory for MLIR in general, with
vector dialect integration tests in particular as a first working suite. To
run all the integration tests (and currently just the vector suite):
$ cmake --build . --target check-mlir-integration
[0/1] Running the MLIR integration tests
Testing Time: 0.24s
Passed: 22
The general call is to contribute to this integration test directory with more
tests and other suites, running end-to-end examples that may be too heavy for
the regular test directory, but should be tested occasionally to verify the
health of MLIR.
Background discussion at:
https://llvm.discourse.group/t/vectorops-rfc-add-suite-of-integration-tests-for-vector-dialect-operations/1213/
Reviewers: nicolasvasilache, reidtatge, andydavis1, rriddle, ftynse, mehdi_amini, jpienaar, stephenneuendorffer
Reviewed By: nicolasvasilache, stephenneuendorffer
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D81626
Summary:
Add a pattern for expanding tanh op into exp form.
A `tanh` is expanded into:
1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
2) exp^{2x}-1 / exp^{2x}+1 , if x < 0.
Differential Revision: https://reviews.llvm.org/D81618
Similarly to `scf::ForOp`, introduce additional `function_ref` arguments to
`AffineForOp::build` that can be used to populate the body of the loop during
its construction. Provide compatibility functions for constructing affine loop
nests using `edsc::ScopedContext`.
`edsc::AffineLoopNestBuilder` and reletad functionality is now deprecated and
will be removed soon, users are expected to switch to `affineLoopNestBuilder`
that provides similar functionality with a simpler OpBuilder-based
implementation.
Differential Revision: https://reviews.llvm.org/D81754
In the affine symbol and dimension check, the code currently assumes
`getAffineScope` and its users `isValidDim` and `isValidSymbol` are only called
on values defined in regions that have a parent Op with `AffineScope` trait.
This is not necessarily the case, and these functions may be called on valid IR
that does not satisfy this assumption. Return `nullptr` from `getAffineScope`
if there is no parent op with `AffineScope` trait. Treat this case
conservatively in `isValidSymbol` by only accepting as symbols the values that
are guaranteed to be symbols (constants, and certain operations). No
modifications are necessary to `isValidDim` that delegates most of the work to
`isValidDim`.
Differential Revision: https://reviews.llvm.org/D81753
Use ::Adaptor alias instead uniformly. Makes the naming more consistent as
adaptor can refer to attributes now too.
Differential Revision: https://reviews.llvm.org/D81789
allocations cannot be moved freely and can remain in divergent control flow.
The current BufferPlacement pass does not support allocation nodes that carry
additional dependencies (like in the case of dynamic shaped types). These
allocations can often not be moved freely and in turn might remain in divergent
control-flow branches. This requires a different strategy with respect to block
arguments and aliases. This CL adds additinal functionality to support
allocation nodes in divergent control flow while avoiding memory leaks.
Differential Revision: https://reviews.llvm.org/D79850
This patch has shift ops conversion implementation. In SPIR-V dialect,
`Shift` and `Base` may have different bit width. On the contrary,
in LLVM dialect both `Base` and `Shift` have to be of the same bit width.
This leads to the following cases:
- if `Base` has the same bit width as `Shift`, the conversion is
straightforward.
- if `Base` has a greater bit width than `Shift`, shift is sign/zero
extended first. Then the extended value is passed to the shift.
- otherwise the conversion is considered to be illegal.
Differential Revision: https://reviews.llvm.org/D81546
Modify structure type in SPIR-V dialect to support:
1) Multiple decorations per structure member
2) Key-value based decorations (e.g., MatrixStride)
This commit kept the Offset decoration separate from members'
decorations container for easier implementation and logical clarity.
As such, all references to Structure layoutinfo are now offsetinfo,
and any member layout defining decoration (e.g., RowMajor for Matrix)
will be add to the members' decorations container along with its
value if any.
Differential Revision: https://reviews.llvm.org/D81426
Summary:
Add Adaptor alias alongside OperandAdaptor to make next renaming more
mechanical. OperandAdaptor's are no longer just about operands.
Considered OpAdaptor too, but then noticed we'd mostly end up with
XOp::OpAdaptor which seems redundant.
Differential Revision: https://reviews.llvm.org/D81741
Add `NoSideEffect` trait to `shape.to_extent_tensor` and
`shape.from_extent_tensor` and defined custom assembly format for the
operations.
Differential Revision: https://reviews.llvm.org/D81158
Summary: * This library is special because of its dependencies so seems to have been inadvertently left out of installs.
Reviewers: antiagainst
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D81693
This option avoids to accidentally reuse variable across -LABEL match,
it can be explicitly opted-in by prefixing the variable name with $
Differential Revision: https://reviews.llvm.org/D81531
Modify structure type in SPIR-V dialect to support:
1) Multiple decorations per structure member
2) Key-value based decorations (e.g., MatrixStride)
This commit kept the Offset decoration separate from members'
decorations container for easier implementation and logical clarity.
As such, all references to Structure layoutinfo are now offsetinfo,
and any member layout defining decoration (e.g., RowMajor for Matrix)
will be add to the members' decorations container along with its
value if any.
Differential Revision: https://reviews.llvm.org/D81426
Implemented `FComparePattern` and `IComparePattern` classes
that provide conversion of SPIR-V comparison ops (such as
`spv.FOrdGreaterThanEqual` and others) to LLVM dialect.
Also added tests in `comparison-ops-to-llvm.mlir`.
Differential Revision: https://reviews.llvm.org/D81487
This patch changes the fusion algorithm so that after fusing two loop nests
we revisit previously visited nodes so that they are considered again for
fusion in the context of the new fused loop nest.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D81609
Summary:
* extra ';' in the following files:
mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
mlir/lib/Dialect/Shape/IR/Shape.cpp
* base class ‘mlir::ConvertVectorToSCFBase<ConvertVectorToSCFPass>’
should be explicitly initialized in the copy constructor [-Wextra] in
mlir/lib/Conversion/VectorToSCF/VectorToSCF.cpp
* warning: ‘bool Expression::operator==(const Expression&) const’
defined but not used [-Wunused-function] in
mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-gen.cpp
Differential Revision: https://reviews.llvm.org/D81673