The error message in the `std.constant` verifier for function-typed constants
had the name of the undefined function hardcoded to `bar`. Report the actual
name instead.
Differential Revision: https://reviews.llvm.org/D82666
Summary:
- Print function name when ReturnOp verification fails
- This helps easily finding the invalid ReturnOp in an IR dump.
Differential Revision: https://reviews.llvm.org/D81513
This simplifies a lot of handling of BoolAttr/IntegerAttr. For example, a lot of places currently have to handle both IntegerAttr and BoolAttr. In other places, a decision is made to pick one which can lead to surprising results for users. For example, DenseElementsAttr currently uses BoolAttr for i1 even if the user initialized it with an Array of i1 IntegerAttrs.
Differential Revision: https://reviews.llvm.org/D81047
It is possible for optimizations to create SSA code which violates
the dominance property in unreachable blocks. Equivalently, dominance
computed using normal mechanisms is undefined in unreachable blocks.
See discussion here: https://llvm.discourse.group/t/rfc-allowing-dialects-to-relax-the-ssa-dominance-condition/833/51
This patch only checks the dominance condition inside blocks which are
reachable from the the entry block of their region. Note that the
dominance conditions of regions contained in an unreachable block are
still checked.
Differential Revision: https://reviews.llvm.org/D79922
The types of forward references are checked that they match with other
uses, but they do not check they match with the definition.
func @forward_reference_type_check() -> (i8) {
br ^bb2
^bb1:
return %1 : i8
^bb2:
%1 = "bar"() : () -> (f32)
br ^bb1
}
Would be parsed and the use site of '%1' would be silently changed to
'f32'.
This commit adds a test for this case, and a check during parsing for
the types to match.
Patch by Matthew Parkinson <mattpark@microsoft.com>
Closes D79317.
This revision allows for creating DenseElementsAttrs and accessing elements using std::complex<APInt>/std::complex<APFloat>. This allows for opaquely accessing and transforming complex values. This is used by the printer/parser to provide pretty printing for complex values. The form for complex values matches that of std::complex, i.e.:
```
// `(` element `,` element `)`
dense<(10,10)> : tensor<complex<i64>>
```
Differential Revision: https://reviews.llvm.org/D79296
It's common in many dialects to use tensors to themselves hold tensor shapes (for example, the shape is itself the result of some non-trivial calculation). Currently, such dialects have to use `tensor<?xi64>` or worse (like allowing either i32 or i64 tensors to represent shapes). `tensor<?xindex>` is the natural type to represent this, but is currently disallowed. This patch allows it.
Differential Revision: https://reviews.llvm.org/D76726
Summary:
The attribute parser fails to correctly parse unsigned 64 bit
attributes as the check `isNegative ? (int64_t)-val.getValue() >= 0
: (int64_t)val.getValue() < 0` will falsely detect an overflow for
unsigned values larger than 2^63-1.
This patch reworks the overflow logic to instead of doing arithmetic
on int64_t use APInt::isSignBitSet() and knowledge of the attribute
type.
Test-cases which verify the de-facto behavior of the parser and
triggered the previous faulty handing of unsigned 64 bit attrbutes are
also added.
Differential Revision: https://reviews.llvm.org/D76493
Summary:
This revision removes all of the functionality related to successor operands on the core Operation class. This greatly simplifies a lot of handling of operands, as well as successors. For example, DialectConversion no longer needs a special "matchAndRewrite" for branching terminator operations.(Note, the existing method was also broken for operations with variadic successors!!)
This also enables terminator operations to define their own relationships with successor arguments, instead of the hardcoded "pass-through" behavior that exists today.
Differential Revision: https://reviews.llvm.org/D75318
This revision add support for formatting successor variables in a similar way to operands, attributes, etc.
Differential Revision: https://reviews.llvm.org/D74789
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
Summary: DenseElementsAttr is used to store tensor data, which in some cases can become extremely large(100s of mb). In these cases it is much more efficient to format the data as a string of hex values instead.
Differential Revision: https://reviews.llvm.org/D74922
Summary: bfloat16 doesn't have a valid APFloat format, so we have to use double semantics when storing it. This change makes sure that hexadecimal values can be round-tripped properly given this fact.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D72667
Summary: The current syntax for AffineMapAttr and IntegerSetAttr conflict with function types, making it currently impossible to round-trip function types(and e.g. FuncOp) in the IR. This revision changes the syntax for the attributes by wrapping them in a keyword. AffineMapAttr is wrapped with `affine_map<>` and IntegerSetAttr is wrapped with `affine_set<>`.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D72429
This simplifies the implementation quite a bit, and removes the need for explicit string munging. One change is made to some of the enum elements of SPV_DimAttr to ensure that they are proper identifiers; The string form is now prefixed with 'Dim'.
PiperOrigin-RevId: 278027132
This allows dialect-specific attributes to be attached to func results. (or more specifically, FunctionLike ops).
For example:
```
func @f() -> (i32 {my_dialect.some_attr = 3})
```
This attaches my_dialect.some_attr with value 3 to the first result of func @f.
Another more complex example:
```
func @g() -> (i32, f32 {my_dialect.some_attr = "foo", other_dialect.some_other_attr = [1,2,3]}, i1)
```
Here, the second result has two attributes attached.
PiperOrigin-RevId: 275564165
This CL implements the last remaining bit of the [strided memref proposal](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
The syntax is a bit more explicit than what was originally proposed and resembles:
`memref<?x?xf32, offset: 0 strides: [?, 1]>`
Nonnegative strides and offsets are currently supported. Future extensions will include negative strides.
This also gives a concrete example of syntactic sugar for the ([RFC] Proposed Changes to MemRef and Tensor MLIR Types)[https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/-wKHANzDNTg].
The underlying implementation still uses AffineMap layout.
PiperOrigin-RevId: 272717437
As specified in the MLIR language reference and rationale documents, `memref`
types should not be allowed to have `index` as element types. As observed in
https://groups.google.com/a/tensorflow.org/forum/#!msg/mlir/P49hVWqTMNc/nW89a4i_AgAJ
this restriction was lifted when canonicalization unit tests for affine
operations were introduced, without sufficient motivation to lift the
restriction itself. The test in question can be trivially rewritten (return
the value from a function instead of storing it to prevent DCE from removing
the producer operation) and the restriction put back in place.
If `memref<...x index>` is relevant for some use cases, the relaxation of the
type system can be implemented separately with appropriate modifications to the
documentation.
PiperOrigin-RevId: 272607043
The existing logic to parse spirv::StructTypes is very brittle. This
change simplifies the parsing logic a lot. The simplification also
allows for memberdecorations to be separated by commas instead of
spaces (which was an artifact of the existing parsing logic). The
change also needs a modification to mlir::parseType to return the
number of chars parsed. Adding a new parseType method to do so.
Also allow specification of spirv::StructType with no members.
PiperOrigin-RevId: 270739672
This modifies DominanceInfo::properlyDominates(Value *value, Operation *op) to return false if the value is defined by a parent operation of 'op'. This prevents using values defined by the parent operation from within any child regions.
PiperOrigin-RevId: 269934920
Tweak to the pretty type parser to recognize that `->` is a special token that
shouldn't be split into two characters. This change allows dialect
types to wrap function types as in `!my.ptr_type<(i32) -> i32>`.
Closestensorflow/mlir#105
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/105 from schweitzpgi:parse-arrow 8b2d768053f419daae5a1a864121a44c4319acbe
PiperOrigin-RevId: 265986240
This will allow for naming values the same as existing SSA values for regions attached to operations that are isolated from above. This fits in with how the system already allows separate name scopes for sibling regions. This name shadowing can be enabled in the custom parser of operations by setting the 'enableNameShadowing' flag to true when calling 'parseRegion'.
%arg = constant 10 : i32
foo.op {
%arg = constant 10 : i32
}
PiperOrigin-RevId: 264255999
LLVM function type has first-class support for variadic functions. In the
current lowering pipeline, it is emulated using an attribute on functions of
standard function type. In LLVMFuncOp that has LLVM function type, this can be
modeled directly. Introduce parsing support for variadic arguments to the
function and use it to support variadic function declarations in LLVMFuncOp.
Function definitions are currently not supported as that would require modeling
va_start/va_end LLVM intrinsics in the dialect and we don't yet have a
consistent story for LLVM intrinsics.
PiperOrigin-RevId: 262372651
Verification complained when using zero-dimensional memrefs in
affine.load, affine.store, std.load and std.store. This PR extends
verification so that those memrefs can be used.
Closestensorflow/mlir#58
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/58 from dcaballe:dcaballe/zero-dim 49bcdcd45c52c48beca776431328e5ce551dfa9e
PiperOrigin-RevId: 262164916
Extend the recently introduced support for hexadecimal float literals to tensor
literals, which may also contain special floating point values such as
infinities and NaNs.
Modify TensorLiteralParser to store the list of tokens representing values
until the type is parsed instead of trying to guess the tensor element type
from the token kinds (hexadecimal values can be either integers or floats, and
can be mixed with both). Maintain the error reports as close as possible to
the existing implementation to avoid disturbing the tests. They can be
improved in a separate clean-up if deemed necessary.
PiperOrigin-RevId: 260794716
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
The initial version of this commit was missing support for float literals that
used to be printed in decimal notation as a fallback, but ended up being
printed in hexadecimal format which became the fallback for special values.
The decimal fallback behavior was not exercised by tests. It is currently
reinstated and tested by the newly added test @f32_potential_precision_loss in
parser.mlir.
PiperOrigin-RevId: 260790900
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
PiperOrigin-RevId: 260018802
In the trait verifier of SingleBlockImplicitTerminator, report the name of the
unexpected terminator op found in the end of the block in addition to the name
of the expected terminator op. This may simplify debugging, especially in
cases where the terminator is omitted for brevity and/or after a long series of
conversions.
PiperOrigin-RevId: 259287452
This is an important step in allowing for the top-level of the IR to be extensible. FuncOp and ModuleOp contain all of the necessary functionality, while using the existing operation infrastructure. As an interim step, many of the usages of Function and Module, including the name, will remain the same. In the future, many of these will be relaxed to allow for many different types of top-level operations to co-exist.
PiperOrigin-RevId: 256427100
This functionality is now moved to a new class, ModuleManager. This class allows for inserting functions into a module, and will auto-rename them on insert to ensure a unique name. This now means that users adding new functions to a module must ensure that the function name is unique, as the Module will no longer do it automatically. This also means that Module::getNamedFunction now operates in O(N) instead of the O(c) time it did before. This simplifies the move of Modules to Operations as the ModuleOp will not be able to have this functionality.
PiperOrigin-RevId: 255846088
The current syntax separates the name and value with ':', but ':' is already overloaded by several other things(e.g. trailing types). This makes the syntax difficult to parse in some situtations:
Old:
"foo: 10 : i32"
New:
"foo = 10 : i32"
PiperOrigin-RevId: 255097928
This is the standard syntax for types on operations, and is also already used by IntegerAttr and FloatAttr.
Example:
dense<5> : tensor<i32>
dense<[3]> : tensor<1xi32>
PiperOrigin-RevId: 255069157
The error would look like:
path/filename.mlir:32:23: error: use of value '%28' expects different type than prior uses: ''i32'' vs ''!_tf.control''
PiperOrigin-RevId: 254874859
This name has caused some confusion because it suggests that it's running op verification (and that this verification isn't getting run by default).
PiperOrigin-RevId: 254035268