Note: What ELF refers to as "TLS", Mach-O seems to refer to as "TLV", i.e.
thread-local variables.
This diff implements support for TLV relocations that reference defined
symbols. On x86_64, TLV relocations are always used with movq opcodes, so for
defined TLVs, we don't need to create a synthetic section to store the
addresses of the symbols -- we can just convert the `movq` to a `leaq`.
One notable quirk of Mach-O's TLVs is that absolute-address relocations
inside TLV-defining sections behave differently -- their addresses are
no longer absolute, but relative to the start of the target section.
(AFAICT, RIP-relative relocations are not allowed in these sections.)
Reviewed By: #lld-macho, compnerd, smeenai
Differential Revision: https://reviews.llvm.org/D85080
Summary:
llvm-mc emits `__bss` sections with an offset of zero, but we weren't expecting
that in our input, so we were copying non-zero data from the start of the file and
putting it in `__bss`, with obviously undesirable runtime results. (It appears that
the kernel will copy those nonzero bytes as long as the offset is nonzero, regardless
of whether S_ZERO_FILL is set.)
I debated on whether to make a special ZeroFillSection -- separate from a
regular InputSection -- but it seemed like too much work for now. But I'm happy
to refactor if anyone feels strongly about having it as a separate class.
Depends on D80857.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Reviewed By: smeenai
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80859
Summary:
Turns out this case is actually really common -- it happens whenever there's
a reference to an `extern` variable that ends up statically linked.
Depends on D80856.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Reviewed By: smeenai
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80857
Summary:
We should be reading / writing our addends / relocated addresses based on
r_length, and not just based on the type of the relocation. But since only
some r_length values are valid for a given reloc type, I've also added some
validation.
ld64 has code to allow for r_length = 0 in X86_64_RELOC_BRANCH relocs, but I'm
not sure how to create such a relocation...
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D80854
Summary:
This diff restores and builds upon @pcc and @ruiu's initial work on
subsections.
The .subsections_via_symbols directive indicates we can split each
section along symbol boundaries, unless those symbols have been marked
with `.alt_entry`.
We exercise this functionality in our tests by using order files that
rearrange those symbols.
Depends on D79668.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Reviewed By: smeenai
Subscribers: thakis, llvm-commits, pcc, ruiu
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79926
This diff restores and builds upon @pcc and @ruiu's initial work on
subsections.
The .subsections_via_symbols directive indicates we can split each
section along symbol boundaries, unless those symbols have been marked
with `.alt_entry`.
We exercise this functionality in our tests by using order files that
rearrange those symbols.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D79926
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
Summary: Similar to other formats, input sections in the MachO
implementation are now grouped under output sections. This is primarily
a refactor, although there's some new logic (like resolving the output
section's flags based on its inputs).
Differential Revision: https://reviews.llvm.org/D77893
Currently, getVA() returns a virtual address with the assumption that
the ImageBase is zero. As I understand, this is what lld-ELF is doing.
However, under our current design, it seems like an awkward setup --
I'm finding that I have to add and subtract ImageBase in several places
to make things work out.
As such, I think it's simpler to have getVA() return a non-relative VA,
but I'm not sure if I'm missing something. Would love to hear more from
folks familiar with lld-ELF.
Differential Revision: https://reviews.llvm.org/D78168
Previously, the special segments `__PAGEZERO` and `__LINKEDIT` were
implemented as special LoadCommands. This diff implements them using
special sections instead which have an `isHidden()` attribute. We do not
emit section headers for hidden sections, but we use their addresses and
file offsets to determine that of their containing segments. In addition
to allowing us to share more segment-related code, this refactor is also
important for the next step of emitting dylibs:
1) dylibs don't have segments like __PAGEZERO, so we need an easy way of
omitting them w/o messing up segment indices
2) Unlike the kernel, which is happy to run an executable with
out-of-order segments, dyld requires dylibs to have their segment
load commands arranged in increasing address order. The refactor
makes it easier to implement sorting of sections and segments.
Differential Revision: https://reviews.llvm.org/D76839
This diff implements:
* dylib loading (much of which is being restored from @pcc and @ruiu's
original work)
* The GOT_LOAD relocation, which allows us to load non-lazy dylib
symbols
* Basic bind opcode emission, which tells `dyld` how to populate the GOT
Differential Revision: https://reviews.llvm.org/D76252
Summary:
This is the first commit for the new Mach-O backend, designed to roughly
follow the architecture of the existing ELF and COFF backends, and
building off work that @ruiu and @pcc did in a branch a while back. Note
that this is a very stripped-down commit with the bare minimum of
functionality for ease of review. We'll be following up with more diffs
soon.
Currently, we're able to generate a simple "Hello World!" executable
that runs on OS X Catalina (and possibly on earlier OS X versions; I
haven't tested them). (This executable can be obtained by compiling
`test/MachO/relocations.s`.) We're mocking out a few load commands to
achieve this -- for example, we can't load dynamic libraries, but
Catalina requires binaries to be linked against `dyld`, so we hardcode
the emission of a `LC_LOAD_DYLIB` command. Other mocked out load
commands include LC_SYMTAB and LC_DYSYMTAB.
Differential Revision: https://reviews.llvm.org/D75382