Summary:
`matchThreeWayIntCompare()` looks for
```
select i1 (a == b),
i32 Equal,
i32 (select i1 (a < b), i32 Less, i32 Greater)
```
but both of these selects/compares can be in it's commuted form,
so out of 8 variants, only the two most basic ones is handled.
This fixes regression being introduced in D66232.
Reviewers: spatel, nikic, efriedma, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66607
llvm-svn: 369841
Summary:
If we have e.g.:
```
%t = icmp ult i32 %x, 65536
%r = select i1 %t, i32 %y, i32 65535
```
the constants `65535` and `65536` are suspiciously close.
We could perform a transformation to deduplicate them:
```
Name: ult
%t = icmp ult i32 %x, 65536
%r = select i1 %t, i32 %y, i32 65535
=>
%t.inv = icmp ugt i32 %x, 65535
%r = select i1 %t.inv, i32 65535, i32 %y
```
https://rise4fun.com/Alive/avb
While this may seem esoteric, this should certainly be good for vectors
(less constant pool usage) and for opt-for-size - need to have only one constant.
But the real fun part here is that it allows further transformation,
in particular it finishes cleaning up the `clamp` folding,
see e.g. `canonicalize-clamp-with-select-of-constant-threshold-pattern.ll`.
We start with e.g.
```
%dont_need_to_clamp_positive = icmp sle i32 %X, 32767
%dont_need_to_clamp_negative = icmp sge i32 %X, -32768
%clamp_limit = select i1 %dont_need_to_clamp_positive, i32 -32768, i32 32767
%dont_need_to_clamp = and i1 %dont_need_to_clamp_positive, %dont_need_to_clamp_negative
%R = select i1 %dont_need_to_clamp, i32 %X, i32 %clamp_limit
```
without this patch we currently produce
```
%1 = icmp slt i32 %X, 32768
%2 = icmp sgt i32 %X, -32768
%3 = select i1 %2, i32 %X, i32 -32768
%R = select i1 %1, i32 %3, i32 32767
```
which isn't really a `clamp` - both comparisons are performed on the original value,
this patch changes it into
```
%1.inv = icmp sgt i32 %X, 32767
%2 = icmp sgt i32 %X, -32768
%3 = select i1 %2, i32 %X, i32 -32768
%R = select i1 %1.inv, i32 32767, i32 %3
```
and then the magic happens! Some further transform finishes polishing it and we finally get:
```
%t1 = icmp sgt i32 %X, -32768
%t2 = select i1 %t1, i32 %X, i32 -32768
%t3 = icmp slt i32 %t2, 32767
%R = select i1 %t3, i32 %t2, i32 32767
```
which is beautiful and just what we want.
Proofs for `getFlippedStrictnessPredicateAndConstant()` for de-canonicalization:
https://rise4fun.com/Alive/THl
Proofs for the fold itself: https://rise4fun.com/Alive/THl
Reviewers: spatel, dmgreen, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66232
llvm-svn: 369840
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This is an almost direct move of the functionality from InstCombine to
InstSimplify. There's no reason not to do this in InstSimplify because
we never create a new value with this transform.
(There's a question of whether any dominance-based transform belongs in
either of these passes, but that's a separate issue.)
I've changed 1 of the conditions for the fold (1 of the blocks for the
branch must be the block we started with) into an assert because I'm not
sure how that could ever be false.
We need 1 extra check to make sure that the instruction itself is in a
basic block because passes other than InstCombine may be using InstSimplify
as an analysis on values that are not wired up yet.
The 3-way compare changes show that InstCombine has some kind of
phase-ordering hole. Otherwise, we would have already gotten the intended
final result that we now show here.
llvm-svn: 347896
Add logic for the special case when a cmp+select can clearly be
reduced to just a bitwise logic instruction, and remove an
over-reaching chunk of general purpose bit magic. The primary goal
is to remove cases where we are not improving the IR instruction
count when doing these select transforms, and in all cases here that
is true.
In the motivating 3-way compare tests, there are further improvements
because we can combine/propagate select values (not sure if that
belongs in instcombine, but it's there for now).
DAGCombiner has folds to turn some of these selects into bit magic,
so there should be no difference in the end result in those cases.
Not all constant combinations are handled there yet, however, so it
is possible that some targets will see more cmov/csel codegen with
this change in IR canonicalization.
Ideally, we'll go further to *not* turn selects into multiple
logic/math ops in instcombine, and we'll canonicalize to selects.
But we should make sure that this step does not result in regressions
first (and if it does, we should fix those in the backend).
The general direction for this change was discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105373.htmlhttp://lists.llvm.org/pipermail/llvm-dev/2017-July/114885.html
Alive proofs for the new bit magic:
https://rise4fun.com/Alive/XG7
Differential Revision: https://reviews.llvm.org/D46086
llvm-svn: 331486