Add eraseInstr(s) utility functions. Before deleting an instruction
collects its use instructions. After deletion deletes use instructions
that became trivially dead.
This patch clears all dead instructions in existing legalizer mir tests.
Differential Revision: https://reviews.llvm.org/D109154
Unmerges have the same fundamental problem as G_TRUNC, and G_TRUNC
could be implemented in terms of G_UNMERGE_VALUES. Reducing the number
of elements in unmerge results ends up producing the original unmerge
type profile, so the artifact combiner needs to eliminate the
intermediate illegal registers. This avoids infinite looping in the
legalizer in a future change.
Assuming an unmerge has each result unmerged the same way, this ends
up producing a new unmerge of the source for every definition. I'm not
sure if the artifact combiner should either insert temporary merges
here and erase the original merge, or if the combiner should look at
uses from defs rather than defs from uses for unmerges.
In a few cases this regresses from using 16-bit shifts for 8-bit
values to using 32-bit shifts, but I think these can be legalized
later (the other legalization rules don't try very hard to use 16-bit
shifts either).
Most notably, we were incorrectly reporting <3 x s16> as a legal type
for these. Make sure these aren't legal to help make progress on
fixing the artifact combiner and vector legalizer
rules. Unfortunately, this means spreading the -global-isel-abort=0
hack, although this doesn't change the legalizer result in any
situation.
Implicit uses of non-register value types places impossible to satisfy
constraints on the legalizer / artifact combiner. These prevent
writing sensible legalize rules for the artifacts without triggering
infinite loops in the legalizer.
The verifier really needs to enforce this, but I'm not sure what the
exact conditions would look like yet.
Use pad with undef and unmerge with unused results. This is annoyingly
similar to several other places in LegalizerHelper, but they're all
slightly different.
The update_*test_checks scripts miss new stuff added at the end of
lines. Regenerate checks so the new mode register operands don't show
up in the diff of a future patch.
The legalizer produces a lot of these, and they make reading legalized
MIR annoying. For some reason, this does seem to sometimes introduce
copies of implicit def, which is dumb.
If we have s_pack_* instructions, legalize this to
G_BUILD_VECTOR_TRUNC from s32 elements. This is closer to how how the
s_pack_* instructions really behave.
If we don't have s_pack_ instructions, expand this by creating a merge
to s32 and bitcasting. This expands to the expected bit operations. I
think this eventually should go in a new bitcast legalize action type
in LegalizerHelper.
We already directly emit the shift operations in RegBankSelect for the
vector case. This could possibly be cleaned up, but I also may want to
defer doing this expansion to selection anyway. I'll see about that
when I try to actually match VOP3P instructions.
This breaks the selection of the build_vector since tablegen doesn't
know how to match G_BUILD_VECTOR_TRUNC yet, so just xfail it for now.
Prepare to accurately track the future denormal-fp-math attribute
changes. The way to actually set these separately is not wired in yet.
This is just a mechanical change, and mostly still assumes the input
and output mode match. This should be refined for some cases. For
example, fcanonicalize lowering should use the flushing variant if
either input or output flushing is enabled
There ended up being two result registers, which would fail on
select. It was really defing a new temp register in the correct def
position, instead of the correct result register.
Confusingly, the intrinsic operands do not match the
instruction/custom node. The order is shuffled, and the 3rd operand is
an immediate to select operands.
I'm not 100% sure I did this right, but fdiv still doesn't select end
to end and it will be easier to tell when it does. This at least
avoids an assertion in RegBankSelect and allows hitting the fallback
on selection.