Relative to the previous landing attempt, this makes
insertValueToMap() resilient against the value already being
present in the map -- previously I only checked this for the
createSimpleAffineAddRec() case, but the same issue can also
occur for the general createNodeForPHI(). In both cases, the
addrec may be constructed and added to the map in a recursive
query trying to create said addrec. In this case, this happens
due to the invalidation when the BE count is computed, which
ends up clearing out the symbolic name as well.
-----
This adds validation for consistency of ValueExprMap and
ExprValueMap, and fixes identified issues:
* Addrec construction directly wrote to ValueExprMap in a few places,
without updating ExprValueMap. Add a helper to ensures they stay
consistent. The adjustment in forgetSymbolicName() explicitly
drops the old value from the map, so that we don't rely on it
being overwritten.
* forgetMemoizedResultsImpl() was dropping the SCEV from
ExprValueMap, but not dropping the corresponding entries from
ValueExprMap.
Differential Revision: https://reviews.llvm.org/D113349
Compiler has an analysis for perfect diamond matching but it does not
support nodes with main/alternate opcodes. The problem is that the
scalars themselves are different and might not match directly with other
nodes, but operands and main/alternate opcodes might match and compiler
might reuse some previously emitted vector instructions. Need to include
this analysis in the cost model and actual vector instructions emission
process.
Differential Revision: https://reviews.llvm.org/D114101
Accum is guaranteed to be defined outside L (via Loop::isLoopInvariant
checks above). I think that should guarantee that the more powerful
ScalarEvolution::isLoopInvariant also determines that the value is loop
invariant.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D114634
We can not swap multiplicand and multiplier because the sve intrinsics
are predicated. Imagine lanes in vectors having the following values:
pg = 0
multiplicand = 1 (from dup)
multiplier = 2
The resulting value should be 1, but if we swap multiplicand and multiplier it will become 2,
which is incorrect.
Differential Revision: https://reviews.llvm.org/D114577
Attempt to further document the intended cache policies requested
by different combinations of GLC, SLC and DLC bits.
GFX10 non-temporal stores are updated to set GLC.
Reviewed By: t-tye
Differential Revision: https://reviews.llvm.org/D114351
This change folds a basic funnel shift idiom:
- (or (shl x, amt), (lshr y, sub(bw, amt))) -> fshl(x, y, amt)
- (or (shl x, sub(bw, amt)), (lshr y, amt)) -> fshr(x, y, amt)
This also helps in folding to rotate shift if x and y are equal since we
already have a funnel shift to rotate combine.
Differential Revision: https://reviews.llvm.org/D114499
In VPRecipeBuilder::handleReplication if we believe the instruction
is predicated we then proceed to create new VP region blocks even
when the load is uniform and only predicated due to tail-folding.
I have updated isPredicatedInst to avoid treating a uniform load as
predicated when tail-folding, which means we can do a single scalar
load and a vector splat of the value.
Tests added here:
Transforms/LoopVectorize/AArch64/tail-fold-uniform-memops.ll
Differential Revision: https://reviews.llvm.org/D112552
This converts a vector SETCC([0,1,2,..], splat(n), ult) to vctp n, which
can be fewer instructions and prevent the need for constant pool loads.
Differential Revision: https://reviews.llvm.org/D114177
Currently the generic lowering of llvm.get.active.lane.mask is done
in SelectionDAGBuilder::visitIntrinsicCall and currently assumes
only fixed-width vectors are used. This patch changes the code to be
more generic and support scalable vectors too. I have added tests
for SVE here:
CodeGen/AArch64/active_lane_mask.ll
although the code quality leaves a lot to be desired. The code will
be improved significantly in a later patch that makes use of the
SVE whilelo instruction.
Differential Revision: https://reviews.llvm.org/D114541
The combined vector register classes with both
VGPRs and AGPRs are currently unallocatable.
This patch turns them into allocatable as a
prerequisite to enable copy between VGPR and
AGPR registers during regalloc.
Also, added the missing AV register classes from
192b to 1024b.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D109300
In some scenarios, usually involving NRVO, we can issue indirect DBG_VALUEs
after SelectionDAG, even in instruction referencing mode (if the variable
is an argument). If the corresponding argument value is spilt to the stack,
then we have:
* Indirection from it being on the stack,
* Indirection from it being a dbg.declare or a dbg.addr.
However InstrRefBasedLDV only emits one level of indirection. This patch
adds the second, by adding an extra DW_OP_deref if necessary. The two
tests modified fail otherwise -- they feature some NRVO, and require two
levels of indirection to be correct.
Differential Revision: https://reviews.llvm.org/D114364
[NFC] As part of using inclusive language within the llvm project, this patch
renames master flag to main flag in these comments.
Reviewed By: ZarkoCA
Differential Revision: https://reviews.llvm.org/D114090
This is a performance patch -- LiveDebugVariables can behave quadratically
if a lot of debug instructions are inserted back into the same place, and
we have to repeatedly step-over hte ones we've already inserted.
To get around it, whenever we insert a debug instruction at a slot index,
check whether there are more debug instructions to insert at this point,
and insert them too. That avoids the repeated lookup and stepping through.
It relies on the container for unlinked debug instructions being recorded
in-order, which is how LiveDebugVariables currently does it.
Differential Revision: https://reviews.llvm.org/D114587
This reverts commit 71a7c55f0f.
The revert broken building llvm-reduce and it is not clear it fixes an
issue with LLVM_ENABLE_THREADS=OFF.
See discussion in https://reviews.llvm.org/D114183 for more details.
This patch prevents the optimizer from producing wide vectors in the IR,
specifically the MMA types (v256i1, v512i1). The idea is that on Power, we only
want to be producing these types only if the vector_pair and vector_quad types
are used specifically.
To prevent the optimizer from producing these types in the IR,
vectorCostAdjustmentFactor() is updated to return an instruction cost factor or
an invalid instruction cost if the current type is that of an MMA type. An
invalid instruction cost returned by this function signifies to other cost
computing functions to return the maximum instruction cost to inform the
optimizer that producing these types within the IR is expensive, and should not
be produced in the first place.
This issue was first seen in the test case included within this patch.
Differential Revision: https://reviews.llvm.org/D113900
This is a very small addition to the existing MVE fixed point vcvt code
to also create them from FP_TO_SINT_SAT and FP_TO_UINT_SAT nodes, which
should be equally valid for native saturating converts under MVE.
Differential Revision: https://reviews.llvm.org/D114360
DBG_INSTR_REF's and DBG_VALUE's can end up in blocks that aren't in the
lexical scope of their variable. It's arguable as to what we should do
about this, however VarLocBasedLDV permits such variable locations to be
propagated, so let's allow it in InstrRefBasedLDV.
It's necessary for the modified test to work.
Differential Revision: https://reviews.llvm.org/D114578
If we only demand bits from one half of a rotation pattern, see if we can simplify to a logical shift.
For the ARM/AArch64 rev16/32 patterns, I had to drop a fold to prevent srl(bswap()) -> rotr(bswap) -> srl(bswap) infinite loops. I've replaced this with an isel PatFrag which should do the same task.
Reapplied with fix for AArch64 rev patterns to matching the ARM fix.
https://alive2.llvm.org/ce/z/iroxki (rol -> shl by amt iff demanded bits has at least as many trailing zeros as the shift amount)
https://alive2.llvm.org/ce/z/4ez_U- (ror -> shl by revamt iff demanded bits has at least as many trailing zeros as the reverse shift amount)
https://alive2.llvm.org/ce/z/cD7dR- (ror -> lshr by amt iff demanded bits has at least as many leading zeros as the shift amount)
https://alive2.llvm.org/ce/z/_XGHtQ (rol -> lshr by revamt iff demanded bits has at least as many leading zeros as the reverse shift amount)
Differential Revision: https://reviews.llvm.org/D114354
The changes in D113888 / 32b6c17b29 altered the memory size of a
masked store, as it will store an unknown number of bytes not the full
vector size. We can have situations where the masked stores is legalized
and then turned to a normal store, as the mask is known to be all ones.
This creates a store with an unknown size MMO that was hitting this
assert.
The store created can be given a better size in a followup patch. This
currently adjusts the assert to handle unknown sizes.
Introduced/discussed in https://reviews.llvm.org/D38719
The header validation logic was also explicitly building the DWARFUnits
to validate. But then other calls, like "Units.getUnitForOffset" creates
the DWARFUnits again in the DWARFContext proper - so, let's avoid
creating the DWARFUnits twice by walking the DWARFContext's units rather
than building a new list explicitly.
This does reduce some verifier power - it means that any unit with a
header parsing failure won't get further validation, whereas the
verifier-created units were getting some further validation despite
invalid headers. I don't think this is a great loss/seems "right" in
some ways to me that if the header's invalid we should stop there.
Exposing the raw DWARFUnitVectors from DWARFContext feels a bit
sub-optimal, but gave simple access to the getUnitForOffset to keep the
rest of the code fairly similar.
This canonicalization breaks the ability to discard checks in some cases.
Add a command line option to disable it. This option is on by default,
so the change is NFC.
See for details:
https://reviews.llvm.org/D112895#3149487
Compiler has an analysis for perfect diamond matching but it does not
support nodes with main/alternate opcodes. The problem is that the
scalars themselves are different and might not match directly with other
nodes, but operands and main/alternate opcodes might match and compiler
might reuse some previously emitted vector instructions. Need to include
this analysis in the cost model and actual vector instructions emission
process.
Differential Revision: https://reviews.llvm.org/D114101
Almost all of the time, call instructions don't actually lead to SP being
different after they return. An exception is win32's _chkstk, which which
implements stack probes. We need to recognise that as modifying SP, so
that copies of the value are tracked as distinct vla pointers.
This patch adds a target frame-lowering hook to see whether stack probe
functions will modify the stack pointer, store that in an internal flag,
and if it's true then scan CALL instructions to see whether they're a
stack probe. If they are, recognise them as defining a new stack-pointer
value.
The added test exercises this behaviour: two calls to _chkstk should be
considered as producing two different values.
Differential Revision: https://reviews.llvm.org/D114443
Avoid un-necessarily recreating DBG_VALUEs on call instructions.
In LiveDebugvalues we choose to ignore any clobbers of SP by call
instructions, as they're irrelevant to our model of the machine. We
currently do so for tracking register values (MTracker); do the same for
tracking variable locations (TTracker).
Test modified to endure that a duplicate DBG_VALUE is not created after the
call in struction in this test.
Differential Revision: https://reviews.llvm.org/D114365
The supplied test case, reduced from real world code, crashes with a
'Invalid size request on a scalable vector.' error.
Since it's similar in spirit to an existing LAA test, rename the file to
generalize it to both.
Differential Revision: https://reviews.llvm.org/D114155
I believe, this effectively completes `X86TTIImpl::getReplicationShuffleCost()`
for AVX512, other than the question of handling plain AVX512F,
where we end up with some really ugly "shuffles",
but then is there any CPU's that support AVX512, but not AVX512DQ/AVX512BW?
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114315
(~a & b) ^ (a | b) --> a
This is the swapped and/or (Demorgan?) sibling fold for
the fold added with D114462 ( 892648b18a ).
This case is easier to specify because we are returning
a root value, not a 'not':
https://alive2.llvm.org/ce/z/SRzj4f
The XL implementation of vec_round for vector double uses
"round-to-nearest, ties to even" just as the vector float
`version does. However clang and gcc use "round-to-nearest-away"
for vector double and "round-to-nearest, ties to even"
for vector float.
The XL behaviour is implemented under the __XL_COMPAT_ALTIVEC__
macro similarly to other instances of incompatibility.
Differential revision: https://reviews.llvm.org/D113642
If we only demand bits from one half of a rotation pattern, see if we can simplify to a logical shift.
For the ARM rev16 patterns, I had to drop a fold to prevent srl(bswap()) -> rotr(bswap) -> srl(bswap) infinite loops. I've replaced this with an isel PatFrag which should do the same task.
https://alive2.llvm.org/ce/z/iroxki (rol -> shl by amt iff demanded bits has at least as many trailing zeros as the shift amount)
https://alive2.llvm.org/ce/z/4ez_U- (ror -> shl by revamt iff demanded bits has at least as many trailing zeros as the reverse shift amount)
https://alive2.llvm.org/ce/z/cD7dR- (ror -> lshr by amt iff demanded bits has at least as many leading zeros as the shift amount)
https://alive2.llvm.org/ce/z/_XGHtQ (rol -> lshr by revamt iff demanded bits has at least as many leading zeros as the reverse shift amount)
Differential Revision: https://reviews.llvm.org/D114354
Select SelectionDAG ops smul_lohi/umul_lohi to
v_mad_i64_i32/v_mad_u64_u32 respectively, with an addend of 0.
v_mul_lo, v_mul_hi and v_mad_i64/u64 are all quarter-rate instructions
so it is better to use one instruction than two.
Further improvements are possible to make better use of the addend
operand, but this is already a strict improvement over what we have
now.
Differential Revision: https://reviews.llvm.org/D113986
Change VOP_PAT_GEN to default to not generating an instruction selection
pattern for the VOP2 (e32) form of an instruction, only for the VOP3
(e64) form. This allows SIFoldOperands maximum freedom to fold copies
into the operands of an instruction, before SIShrinkInstructions tries
to shrink it back to the smaller encoding.
This affects the following VOP2 instructions:
v_min_i32
v_max_i32
v_min_u32
v_max_u32
v_and_b32
v_or_b32
v_xor_b32
v_lshr_b32
v_ashr_i32
v_lshl_b32
A further cleanup could simplify or remove VOP_PAT_GEN, since its
optional second argument is never used.
Differential Revision: https://reviews.llvm.org/D114252
Implicit derivatives are only valid in pixel shaders,
hence only implicitly enable WQM for pixel shaders.
This avoids unintended WQM in other shader types (e.g. compute)
when image sampling instructions are used.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D114414
This is similar to D113574, but as a DAG combine, not tablegen patterns.
Doing the fold as a DAG combine allows the fadd to be folded with a
fmul, finally producing a predicated vfma. It performs the same fold of
fadd(x, vselect(p, y, -0.0)) to vselect p, (fadd x, y), x) using -0.0 as
the identity value of a fadd.
Differential Revision: https://reviews.llvm.org/D113584
In quite a few places we were calling getCurSDLoc() to get the debug
location, but this is already a local variable `sdl`.
Differential Revision: https://reviews.llvm.org/D114447
It appears that we can emit all the instructions for a function, including
debug instructions, and then optimise some of the values out late.
Specifically, in the attached test case, an argument gets optimised out
after DBG_VALUE / DBG_INSTR_REFs are created. This confuses
MachineFunction::finalizeDebugInstrRefs, which expects to be able to find a
defining instruction, and crashes instead.
Fix this by identifying when there's no defining instruction, and
translating that instead into a DBG_VALUE $noreg.
Differential Revision: https://reviews.llvm.org/D114476
Similar to D84091 which added extra predicated folds for integer operations
using the identity element of the operation, this adds them for floating
point operations for the form `BinOp(x, select(p, y, Identity))`. They are
folded back to predicated versions of the operator, with fadd having the
identity -0.0, fsub using the identity 0.0 and fmul using 1.0.
Differential Revision: https://reviews.llvm.org/D113574
This patch updates the cost model for ordered reductions so that a call
to the llvm.fmuladd intrinsic is modelled as a normal fmul instruction
plus the cost of an ordered fadd reduction.
Differential Revision: https://reviews.llvm.org/D111630
In-loop vector reductions which use the llvm.fmuladd intrinsic involve
the creation of two recipes; a VPReductionRecipe for the fadd and a
VPInstruction for the fmul. If the call to llvm.fmuladd has fast-math flags
these should be propagated through to the fmul instruction, so an
interface setFastMathFlags has been added to the VPInstruction class to
enable this.
Differential Revision: https://reviews.llvm.org/D113125
The existing constrained shift PatFrags only dealt with masked shift
from OpenCL front-ends. This change copies the
X86DAGToDAGISel::isUnneededShiftMask() function to AMDGPU and uses it in
the shift PatFrag predicates.
Differential Revision: https://reviews.llvm.org/D113448
Similarly to what GCC does, we should allow scalars with
the "v" constraint rather than introducing unnecessary
new constraints for scalars in Altivec registers.
Differential revision: https://reviews.llvm.org/D113635
AMDGPU is unusual in that the both stack is indexed in the same
direction as stack growth (up). We therefore always need the emergency
stack slots placed as low as possible to ensure they are in range of
load/store instruction immediate offsets. The existing logic is mostly
OK, but failed if we required stack realignment.
I don't understand what the existing control isFPCloseToIncomingSP is
supposed to mean, but can only be used to stop placing the scavenge
slots earlier. Make this explicit so that targets can opt-in rather
than opt-out only.
(a & b) ^ (~a | b) --> ~a
I was looking for a shortcut to reduce some of the complex logic
folds that are currently up for review (D113216
and others in that stack), and I found this missing from
instcombine/instsimplify.
There is a trade-off in putting it into instsimplify: because
we can't create new values here, we need a strict 'not' op (no
undef elements). Otherwise, the fold is not valid:
https://alive2.llvm.org/ce/z/k_AGGj
If this was in instcombine instead, we could create the proper
'not'. But having the fold here benefits other passes like GVN
that use instsimplify as an analysis.
There is a related fold where 'and' and 'or' are swapped, and
that is planned as a follow-up commit.
Differential Revision: https://reviews.llvm.org/D114462
The MIR sample loader changes the branch probability but not BFI.
Here we force a recompute of BFI if the branch probabilities are
changed.
Also register the MIR FSAFDO passes properly.
Differential Revision: https://reviews.llvm.org/D114400
[NFC] As part of using inclusive language within the llvm project, this patch
replaces master with primary in `LiveRangeUtils.h`.
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D114191
The benefits of sampling-based PGO crucially depends on the quality of profile
data. This diff implements a flow-based algorithm, called profi, that helps to
overcome the inaccuracies in a profile after it is collected.
Profi is an extended and significantly re-engineered classic MCMF (min-cost
max-flow) approach suggested by Levin, Newman, and Haber [2008, Complementing
missing and inaccurate profiling using a minimum cost circulation algorithm]. It
models profile inference as an optimization problem on a control-flow graph with
the objectives and constraints capturing the desired properties of profile data.
Three important challenges that are being solved by profi:
- "fixing" errors in profiles caused by sampling;
- converting basic block counts to edge frequencies (branch probabilities);
- dealing with "dangling" blocks having no samples in the profile.
The main implementation (and required docs) are in SampleProfileInference.cpp.
The worst-time complexity is quadratic in the number of blocks in a function,
O(|V|^2). However a careful engineering and extensive evaluation shows that
the running time is (slightly) super-linear. In particular, instances with
1000 blocks are solved within 0.1 second.
The algorithm has been extensively tested internally on prod workloads,
significantly improving the quality of generated profile data and providing
speedups in the range from 0% to 5%. For "smaller" benchmarks (SPEC06/17), it
generally improves the performance (with a few outliers) but extra work in
the compiler might be needed to re-tune existing optimization passes relying on
profile counts.
Reviewed By: wenlei, hoy
Differential Revision: https://reviews.llvm.org/D109860
Support for builtins that use bcdadd./bcdsub. to add/subtract
Binary Coded Decimal values as well as to determine validity
and compare BCD values.
Differential revision: https://reviews.llvm.org/D114088
These variables are not out-params, and we immediately return after assigning them. Thus, the assignments are dead and just confusing.
I believe these used to be out-params, but they're not any more.
The benefits of sampling-based PGO crucially depends on the quality of profile
data. This diff implements a flow-based algorithm, called profi, that helps to
overcome the inaccuracies in a profile after it is collected.
Profi is an extended and significantly re-engineered classic MCMF (min-cost
max-flow) approach suggested by Levin, Newman, and Haber [2008, Complementing
missing and inaccurate profiling using a minimum cost circulation algorithm]. It
models profile inference as an optimization problem on a control-flow graph with
the objectives and constraints capturing the desired properties of profile data.
Three important challenges that are being solved by profi:
- "fixing" errors in profiles caused by sampling;
- converting basic block counts to edge frequencies (branch probabilities);
- dealing with "dangling" blocks having no samples in the profile.
The main implementation (and required docs) are in SampleProfileInference.cpp.
The worst-time complexity is quadratic in the number of blocks in a function,
O(|V|^2). However a careful engineering and extensive evaluation shows that
the running time is (slightly) super-linear. In particular, instances with
1000 blocks are solved within 0.1 second.
The algorithm has been extensively tested internally on prod workloads,
significantly improving the quality of generated profile data and providing
speedups in the range from 0% to 5%. For "smaller" benchmarks (SPEC06/17), it
generally improves the performance (with a few outliers) but extra work in
the compiler might be needed to re-tune existing optimization passes relying on
profile counts.
Reviewed By: wenlei, hoy
Differential Revision: https://reviews.llvm.org/D109860
Detailed description: We currently have a set of patterns to select ISD::FNEG and ISD::FABS to the bitwise operations. We need to make them predicated to select the VALU or SALU bitwise operation variant according to the SDNode divergence bit.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D114257
Usage and naming of macros in VPIntrinsics.def has been inconsistent. Rename all property macros to VP_PROPERTY_<name>. Use BEGIN/END scope macros to attach properties to vp intrinsics and SDNodes (instead of specifying either directly with the property macro).
A follow-up patch has documentation on how the macros are (intended) to be used.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D114144
I noticed that adding a seemingly unrelated fold for xor caused
regressions on similar patterns, and this is one of the
underlying causes.
This could also be a variation for code as seen in:
https://llvm.org/PR34047
...although that exact example should be fixed after:
D113035 / c36b7e21bd
The vector test shows that we are actually missing a potential
canonicalization for bitcast-of-sext-of-not or the inverse.
The scalar test shows that even if we had that canonicalization,
it would still be possible to see this pattern due to extra uses.
https://alive2.llvm.org/ce/z/y2BAgi
Add OR_None code to indicate that there is no overwrite. This has no any effect for current uses but will be used in one of the next patches building support for PHI translation.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D105098
A masked load or store will load a potentially unknown number of bytes
from a memory location - that is not generally known at compile time.
They do not necessarily load/store the entire vector width, and treating
them as such can lead to incorrect aliasing information (for example, if
the underlying object is smaller than the size of the vector).
This makes sure that the MMO is given an unknown size to represent this.
which is less accurate that "may load/store from up to 16 bytes", but
less incorrect that "will load/store from 16 bytes".
Differential Revision: https://reviews.llvm.org/D113888
This implements the rest of Power10 instruction fusion pairs, according
to user manual, including 'wide immediate', 'load compare', 'zero move'
and 'SHA3 assist'.
Only 'SHA3 assist' is enabled by default.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D112912
This essentially reverts f5884d255e
(D57277).
That commit was made as a workaround since LLVM back then didn't
support cross-section relative relocations (IMAGE_REL_ARM64_REL32)
in COFF for ARM64. Support for this was implemented later,
in d5c5cf5ce8 (D99572) and
382c505d9c (D102217).
The commit that moved jump tables to the function section noted
that it woud be ideal to utilize IMAGE_REL_ARM64_REL32.
Differential Revision: https://reviews.llvm.org/D113576
For relocations against temporary symbols (that don't persist in
the object file), we normally adjust them to reference the start of
the section.
For adrp relocations, the immediate offset from the referenced
symbol is stored in the opcode as the 21 bit signed immediate; this
means that the symbol referenced must be within +/- 1 MB from the
referenced symbol.
Create label symbols with regular intervals (1 MB intervals). For
relocations against temporary symbols, pick the preceding added
offset symbol and make the relocation against that instead of
against the start of the section.
This should fix the root issue behind
https://bugs.llvm.org/show_bug.cgi?id=52378.
Differential Revision: https://reviews.llvm.org/D114340
This patch adjusts ThreadPool::async to return futures that wrap
the result type of the passed in callable.
To do so, ThreadPool::asyncImpl first creates a shared promise. The
result of the promise is set in a new callable that first executes the
task. The callable is added to the task queue.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D114183
This basically reverts 1778831a3d, which split them.
Since they were split 9 years ago, EmitGCCInlineAsmStr() grew a bunch of
features that usually weren't added to EmitMSInlineAsmStr(), and
that was usually a mistake. D71677, D113932, D114167 are all examples
of where things were backported to EmitMSInlineAsmStr().
The names were also not great. EmitMSInlineAsmStr() used to be called for `asm
inteldialect`, which clang produces for Microsoft-style __asm { ... } blocks as
well for GCC-style __asm__ / asm statements with -masm=intel. On the other hand,
EmitGCCInlineAsmStr() used to be called for `asm`, whic clang produces for
GCC-style __asm__ / asm statements with -masm=att (the default).
It's also less code (23 insertions, 188 deletions).
No behavior change.
Differential Revision: https://reviews.llvm.org/D114330
This makes a line in llvm/test/CodeGen/X86/asm-block-labels.ll pass
with `asm inteldialect` too.
I don't know if this is something one can hit in practice with inline
asm. The test is from 2007 (4646aa3e33) but in 2009 blockaddr was
introduced and e.g. `__asm__ __volatile__("brl %0" :: "X"(&&foo) : "memory");`
compiles to
call void asm sideeffect "brl $0", "X,..."(i8* blockaddress(@func, %1))
nowadays (thanks to jrtc27 for that example!).
(6c4d255bf3 switched clang to blockaddress on an opt-in basis,
e4801f7844 added docs for it, 31b132c0b7 added IR support.)
I half-heartedly tried to build clang 2.8 locally, but it didn't
just build. And 2.8 didn't have a prebuilt clang binary yet.
The motivation is to make EmitGCCInlineAsmStr() and EmitMSInlineAsmStr()
more alike, and maybe we should delete this code form EmitGCCInlineAsmStr()
instead. But since it's just 3 lines and it's reachable from LLVM IR,
let's do the safer thing for now.
Differential Revision: https://reviews.llvm.org/D114329
Most changes are rewording comments but there are some assertions that I rephrased.
Reviewed By: kparzysz
Differential Revision: https://reviews.llvm.org/D114132
Currently, we restore the return address register as the last restoring
instruction in the epilog. The next instruction is `ret` usually. It is
a use of return address register. In some microarchitectures, there is
load-to-use data hazard. To avoid the load-to-use data hazard, we could
separate the load instruction from its use as far as possible. In this
patch, we reverse the order of restoring callee-saved registers to
increase the distance of `load ra` and `ret` in the epilog.
Differential Revision: https://reviews.llvm.org/D113967
This adds validation for consistency of ValueExprMap and
ExprValueMap, and fixes identified issues:
* Addrec construction directly wrote to ValueExprMap in a few places,
without updating ExprValueMap. Add a helper to ensures they stay
consistent. The adjustment in forgetSymbolicName() explicitly
drops the old value from the map, so that we don't rely on it
being overwritten.
* forgetMemoizedResultsImpl() was dropping the SCEV from
ExprValueMap, but not dropping the corresponding entries from
ValueExprMap.
Differential Revision: https://reviews.llvm.org/D113349
Update the reference publication for the SyncDependenceAnalysis and Divergence Analysis. Fix phrasing, formatting. Add comments on reducible loop limitation.
Reviewed By: sameerds
Differential Revision: https://reviews.llvm.org/D114146
Apparently my methodology was suboptimal, and not only did miss all the +VL tuples,
i also missed some plain tuples. I believe, this adds everything missing.
Indeed, these manual costmodels are just not okay long-term.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114334
Much like the VPMOVM2[BW] / VPMOV[BW]2M from AVX512BW,
these either sign-extent the mask register into a vector,
or pack the mask from vector register.
Apparently, we didn't even have MCA tests for these,
added in rG2f364f6f0d3a2420ca78cbd80abb186657180e05,
so i'm just guessing that their perf characteristics
are optimal.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114314
This patch fixes PR52111. The problem is that LV propagates poison-generating flags (`nuw`/`nsw`, `exact`
and `inbounds`) in instructions that contribute to the address computation of widen loads/stores that are
guarded by a condition. It may happen that when the code is vectorized and the control flow within the loop
is linearized, these flags may lead to generating a poison value that is effectively used as the base address
of the widen load/store. The fix drops all the integer poison-generating flags from instructions that
contribute to the address computation of a widen load/store whose original instruction was in a basic block
that needed predication and is not predicated after vectorization.
Reviewed By: fhahn, spatel, nlopes
Differential Revision: https://reviews.llvm.org/D111846
This adds and uses look-up tables for non-loop branch probabilities, which have
have probabilities directly encoded into the tables for the different condition
codes. Compared to having this logic inlined in different functions, as it used
to be the case, I think this is compacter and thus also easier to check/cross
reference. This also adds a test for pointer heuristics that was missing.
Differential Revision: https://reviews.llvm.org/D114009
This teaches AArch64TargetLowering::shouldSinkOperands to sink splat
shuffles to certain neon intrinsics, so that they can make use of the
lane variants of the instructions that are available.
Differential Revision: https://reviews.llvm.org/D112994
Add an alias of `addi [x], zero, imm` to generate pseudo
instruction li, which makes assembly mush more readable.
For existed tests, users can update them by running script
`llvm/utils/update_llc_test_checks.py`.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D112692
The functionality of hasAnalyzableMemoryWrite() is effectively
subsumed by getLocForWriteEx(), which will return None if the
instruction is not analyzable. The implementations don't match
exactly (e.g. getLocForWriteEx() does not limit non-calls to
stores), but in conjunction with the isRemovable() check, it ends
up being the same.
If we're looking only at the lower bound, the actual modulus
doesn't matter. This is a leftover from when I wanted to consider
the upper bound as well, where the modulus does matter.
If (X urem M) >= C we know that X >= C. Make use of this fact
when computing the implied condition range.
In some cases we could also establish an upper bound, but that's
both tricker and not interesting in practice.
Alive: https://alive2.llvm.org/ce/z/R5ZGSW
A first step towards modeling preheader and exit blocks in VPlan as well.
Keeping the vector loop in a region allows for changing the VF as we
traverse region boundaries.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D113182
This is a generalization/extension of the existing and/or
folds noted with TODO comments. Those have a one-use
constraint that is not necessary.
Potential follow-ups are noted by the TODO comments in
the new function. We can also call this function from
other binop visit* functions, but we need to add tests
first.
This solves:
https://llvm.org/PR52543https://alive2.llvm.org/ce/z/NWuCR5
We have transform that tries turn a pmovmskb into movmskps/pd or
movmskps to movmskpd. This transform isn't valid if the truncate
discarded bits that might be set by the original movmsk.
We could fix this by inserting an AND after the new movmsk to discard
the equivalent of the truncated bits, but I've left that for later
patch.
Fixes PR52567.
Differential Revision: https://reviews.llvm.org/D114306
The compiler was generating symbols in the final code object for local
branch target labels. This bloats the code object, slows down the loader,
and is only used to simplify disassembly.
Use '--symbolize-operands' with llvm-objdump to improve readability of the
branch target operands in disassembly.
Fixes: SWDEV-312223
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D114273
The if-check above deleted part guarantees that StoreOffset <= LoadOffset
and that StoreOffset + StoreSize >= LoadOffset + LoadSize, and given that
LoadOffset + LoadSize > LoadOffset when LoadSize > 0. Thus, this shows
StoreOffset + StoreSize > LoadOffset is guaranteed given LoadSize > 0,
while it could be meaningless to have a type with nonpositive size, so that
the check could be removed. The values are converted to signed types to
avoid unsigned operation with negative offsets.
Part of revision D100179
Reapply commit c35e8185d8 with fixing problem
reported by mstorsjo
The `llvm.instrprof.increment` intrinsic uses `i32` for the index. We should use this same type for the index into the GEP instructions.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114268
[NFC] As part of using inclusive language within the llvm project, this patch
replaces master with main in `Thumb2SizeReduction.cpp`.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D114196
NFCI. Previously the implicit use was added to V_MOV_B32_indirect_read
when building the instruction. V_MOV_B32_indirect_write didn't have an
implicit use of M0 at all, but apparently it did not cause any problems.
Differential Revision: https://reviews.llvm.org/D114239
Revert "[SCEV] Defer all work from ea12c2cb as late as possible"
Revert "[SCEV] Defer loop property checks from ea12c2cb as late as possible"
This reverts commit 734abbad79 and 1a5666acb2.
Both of these changes were speculative attempts to address a compile time regression. Neither worked, and both complicated the code in undesirable ways.
On RISC-V, icmp is not sunk (as the following snippet shows) which
generates the following suboptimal branch pattern:
```
core_list_find:
lh a2, 2(a1)
seqz a3, a0 <<
bltz a2, .LBB0_5
bnez a3, .LBB0_9 << should sink the seqz
[...]
j .LBB0_9
.LBB0_5:
bnez a3, .LBB0_9 << should sink the seqz
lh a1, 0(a1)
[...]
```
due to an icmp not being sunk.
The blocks after `codegenprepare` look as follows:
```
define dso_local %struct.list_head_s* @core_list_find(%struct.list_head_s* readonly %list, %struct.list_data_s* nocapture readonly %info) local_unnamed_addr #0 {
entry:
%idx = getelementptr inbounds %struct.list_data_s, %struct.list_data_s* %info, i64 0, i32 1
%0 = load i16, i16* %idx, align 2, !tbaa !4
%cmp = icmp sgt i16 %0, -1
%tobool.not37 = icmp eq %struct.list_head_s* %list, null
br i1 %cmp, label %while.cond.preheader, label %while.cond9.preheader
while.cond9.preheader: ; preds = %entry
br i1 %tobool.not37, label %return, label %land.rhs11.lr.ph
```
where the `%tobool.not37` is the result of the icmp that is not sunk.
Note that it is computed in the basic-block up until what becomes the
`bltz` instruction and the `bnez` is a basic-block of its own.
Compare this to what happens on AArch64 (where the icmp is correctly sunk):
```
define dso_local %struct.list_head_s* @core_list_find(%struct.list_head_s* readonly %list, %struct.list_data_s* nocapture readonly %info) local_unnamed_addr #0 {
entry:
%idx = getelementptr inbounds %struct.list_data_s, %struct.list_data_s* %info, i64 0, i32 1
%0 = load i16, i16* %idx, align 2, !tbaa !6
%cmp = icmp sgt i16 %0, -1
br i1 %cmp, label %while.cond.preheader, label %while.cond9.preheader
while.cond9.preheader: ; preds = %entry
%1 = icmp eq %struct.list_head_s* %list, null
br i1 %1, label %return, label %land.rhs11.lr.ph
```
This is caused by sinkCmpExpression() being skipped, if multiple
condition registers are supported.
Given that the check for multiple condition registers affect only
sinkCmpExpression() and shouldNormalizeToSelectSequence(), this change
adjusts the RISC-V target as follows:
* we no longer signal multiple condition registers (thus changing
the behaviour of sinkCmpExpression() back to sinking the icmp)
* we override shouldNormalizeToSelectSequence() to let always select
the preferred normalisation strategy for our backend
With both changes, the test results remain unchanged. Note that without
the target-specific override to shouldNormalizeToSelectSequence(), there
is worse code (more branches) generated for select-and.ll and select-or.ll.
The original test case changes as expected:
```
core_list_find:
lh a2, 2(a1)
bltz a2, .LBB0_5
beqz a0, .LBB0_9 <<
[...]
j .LBB0_9
.LBB0_5:
beqz a0, .LBB0_9 <<
lh a1, 0(a1)
[...]
```
Differential Revision: https://reviews.llvm.org/D98932
We were adding all defined weak symbols to the materialization
responsibility, but local symbols will not be in the symbol table, so it
failed to materialize due to the "missing" symbol.
Local weak symbols come up in practice when using `ld -r` with a hidden
weak symbol.
rdar://85574696
For tagged-globals, we only need to disable relaxation for globals that
we actually tag. With this patch function pointer relocations, which
we do not instrument, can be relaxed.
This patch also makes tagged-globals work properly with LTO, as
-Wa,-mrelax-relocations=no doesn't work with LTO.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D113220
This makes the following program build with -masm=intel:
int foo(int count) {
asm goto ("dec %0; jb %l[stop]" : "+r" (count) : : : stop);
return count;
stop:
return 0;
}
It's also is another step towards merging EmitGCCInlineAsmStr() and
EmitMSInlineAsmStr().
Differential Revision: https://reviews.llvm.org/D114167
No intended behavior change.
EmitGCCInlineAsmStr() used to explicitly check for modifier 'l'
after handling block address and machine basic block operands.
This prevented passing a MachineOperand with 'l' modifier to
PrintAsmMemoryOperand(). Conceptually that seems kind of nice,
but in practice the overrides of PrintAsmMemoryOperand() in all (*)
AsmPrinter subclasses already reject modifiers they don't know about,
and none of them don't know about 'l'. So removing this doesn't have
a behavior difference, is less code, and it makes EmitGCCInlineAsmStr()
and EmitMSInlineAsmStr() more similar, to prepare for merging them later.
(Why not _add_ the branch to EmitMSInlineAsmStr() instead? Because that
always works with X86AsmPrinter I think, and
X86AsmPrinter::PrintAsmMemoryOperand() very decisively rejects the 'l'
modifier, so it's hard to motivate adding that branch.)
*: The one exception was AVRAsmPrinter, which had an llvm_unreachable instead
of returning true. So this commit changes that, so that the AVR target keeps
emitting an error instead of crashing when passing a mem operand with a :l
modifier to it. All the other targets already don't crash on this.
Differential Revision: https://reviews.llvm.org/D114216
Introduce V_MOV_B32_indirect_read for indexed vgpr reads
(and rename the old V_MOV_B32_indirect to
V_MOV_B32_indirect_write) so they can be unambiguously
distinguished from regular V_MOV_B32_e32. Previously they
were distinguished by looking for extra implicit operands
but this is fragile because regular moves sometimes have
extra implicit operands too:
- either by accident, when instructions end up with
duplicate implicit operands (see e.g. D100939)
- or by design, when SIInstrInfo::copyPhysReg breaks a
multi-dword copy into individual subreg mov instructions
and adds implicit operands for the super-register.
The effect of this is that SIInstrInfo::isFoldableCopy can
be simplified and identifies more foldable copies. The test
diffs show that more immediate 0 values have been folded as
inline operands.
SIInstrInfo::isReallyTriviallyReMaterializable could
probably be simplified too but that is not part of this
patch.
Differential Revision: https://reviews.llvm.org/D114230
If in addition to AVX512BW (that provides `{k}<->{i8,i16}` casts and i16 shuffles),
we have AVX512VBMI, which provides i8 shuffles, we are in an optimal situation.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114071
Note that there are many other missing costs, i'm *only* adding the ones that are queried
from `getReplicationShuffleCost()` for the existing (quite exhaustive) test coverage.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114070
Here we get pretty lucky. AVX512F does not provide any instructions
to convert between a `k` vector mask and a vector,
but AVX512BW adds `{k}<->nX{i8,i16}`conversions,
and just as it happens, with AVX512BW we have a i16 shuffle.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113915
Check for a hidden ISD::ROTR (rotl(sub(0,x))) - vXi8 lowering can handle both (its always beneficial for splats, but otherwise only if we have VPTERNLOG).
We currently hit infinite loops in TargetLowering::expandROT if we set ISD::ROTR to custom, which needs addressing before we extend this much further.
Patch to fix some of the regressions in D77804.
By folding to rotate/funnel-shift by constant amounts for illegal types, we prevent SimplifyDemandedBits from destroying the patterns prematurely, allowing us to use the rotate/funnel-shift legalization that was added in D112443.
Differential Revision: https://reviews.llvm.org/D113192
Patch [1] added further InstCombine trunc+icmp => mask+icmp
optimization and this caused a couple of bpf selftest failure.
Previous llvm BPF backend patch [2] introduced llvm.bpf.compare
builtin to handle such situations.
This patch further added support ">" and ">=" icmp opcodes.
Tested with bpf selftests and all tests are passed including two
previously failed ones.
Note Patch [1] also added optimization if the to-be-compared
constant is negative-power-of-2 (-C) or not-of-power-of-2 (~C).
This patch didn't implement these two cases as typical bpf
program compares a scalar to a positive length or boundary value,
and this scalar later is used as a index into an array buffer
or packet buffer.
[1] https://reviews.llvm.org/D112634
[2] https://reviews.llvm.org/D112938
Differential Revision: https://reviews.llvm.org/D114215
Do more efforts to use sp if it is possible to lower a frame index.
Reviewers: reames, loicottet, ostannard, t.p.northover
Reviewed By: reames
Subscribers: arphaman, danilaml, hiraditya, kristof.beyls, llvm-commits, Matt, yrouban
Differential Revision: https://reviews.llvm.org/D111133
There are still another 2 uses of PointerType::getElementType in
Evaluator when evaluating BitCast's on pointers. BitCast's on pointers
should be removed when opaque ptr is ready, so I just keep them as is.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D114131
This is a second speculative compile time optimization to address a reported regression. My actual suspicion is that availability of no-self-wrap is making some *other* bit of code trigger, but let's rule this out.
Recently we started generate DBG_VALUEs with $noreg operands.
This crashes SIPostRABundler, and it should not iterate these
registers anyway.
Fixes: SWDEV-311733
Differential Revision: https://reviews.llvm.org/D114202
The @llvm.ptrauth.sign/sign.generic intrinsics map cleanly to
the various AArch64 PAC[IDG][Z][AB] instructions. Select them.
Differential Revision: https://reviews.llvm.org/D91087
This implements nearly the same logic as getLocForWriteEx(), and
is only used in one place. In that context, we should also know
that getLocForWriteEx() returns a non-None result. As such,
consolidate everything to use one function.
This change moves logic which we'd added specifically for less than tests so that it applies to equalities and greater than tests as well. The basic idea is that if we can show an IV cycles infinitely through the same series on self-wrap, and that the exit condition must be taken to prevent UB, we can conclude that it must be taken before self-wrap and thus infer said flag.
The motivation here is simple loops with unsigned induction variables w/non-one steps and inequality tests. A toy example would be:
for (unsigned i = 0; i != N; i += 2) { body; }
If body contains no side effects, and this is a mustprogress function, we can assume that this must be a finite loop and thus that the exit count is N/2.
Differential Revision: https://reviews.llvm.org/D103991
checkOrderedReductions looks for Phi nodes which can be classified as in-order,
meaning they can be vectorised without unsafe math. In order to vectorise the
reduction it should also be classified as in-loop by getReductionOpChain, which
checks that the reduction has two uses.
In this patch, a similar check is added to checkOrderedReductions so that we
now return false if there are more than two uses of the FAdd instruction.
This fixes PR52515.
Reviewed By: fhahn, david-arm
Differential Revision: https://reviews.llvm.org/D114002
We might emit functions that are private and never called. The coro
split pass only processes functions that might be called. Remove
intrinsics that we can't generate code for.
rdar://84619859
Differential Revision: https://reviews.llvm.org/D114021
Fixed the vector type issue that where we used getVectorNumElements()
should be replaced by getVectorElementCount() when lowering these
intrinsics.
This is similar to D94149
Signed-off-by: Eric Tang <tangxingxin1008@gmail.com>
Reviewed By: craig.topper, frasercrmck
Differential Revision: https://reviews.llvm.org/D109809
We were missing patterns for vector_reverse of unpacked FP vector
types, as well as all the supported bfloat vectors.
Tests added here:
CodeGen/AArch64/named-vector-shuffle-reverse-sve.ll
Differential Revision: https://reviews.llvm.org/D114089
The initial two cases require a SCEVConstant as RHS. Pull up the condition
to check and swap SCEVConstants from below. Also remove a redundant
check & swap if RHS is SCEVUnknown.
This is aligned with GCC's behavior.
Also, alias `-mno-fp-ret-in-387` to `-mno-x87`, by which we can fix pr51498.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D112143
AMD64 ABI mandates caller to specify the number of used SSE registers
when passing variable arguments.
GCC also provides option -mskip-rax-setup to skip the setup of rax when
SSE is disabled. This helps to reduce the code size, see pr23258.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D112413
Not only RISCV but also other target such as CSKY, there are compressed instructions mixed with normal instructions.
To reuse the basic infra to compress/uncompress and predict instruction, we need reconstruct the RISCVCompressInstEmitter
and make it more general and suitable for other target.
Differential Revision: https://reviews.llvm.org/D113475
We should avoid mixing old AMX instrinsic with new AMX intrinsic. For
old AMX intrinsic, user is responsible for invoking tile release. This
patch is to check if there is any tile config generated by compiler. If
so it emit tilerelease instruction, otherwise it don't emit the
instruction.
Differential Revision: https://reviews.llvm.org/D114066
Don't expand CTTZ if CTPOP or CTLZ is supported on the promoted type.
We have special handling for CTTZ expansion to use those ops with a
small conversion. The setup for that doesn't generate extra code or
large constants so we don't gain anything from expanding early and we
make CTTZ_ZERO_UNDEF codegen worse.
Follow up from post commit feedback on D112268. We don't seem to have
any in tree tests that care about this.
This solves the same crash as in D104503, but with a different approach.
The test case test_non_dom demonstrates a case where scev-aa crashes today. (If exercised either by -eval-aa or -licm.) The basic problem is that SCEV-AA expects to be able to compute a pointer difference between two SCEVs for any two pair of pointers we do an alias query on. For (valid, but out of scope) reasons, we can end up asking whether expressions in different sub-loops can alias each other. This results in a subtraction expression being formed where neither operand dominates the other.
The approach this patch takes is to leverage the "defining scope" notion we introduced for flag semantics to detect and disallow the formation of the problematic SCEV. This ends up being relatively straight forward on that new infrastructure. This change does hint that we should probably be verifying a similar property for all SCEVs somewhere, but I'll leave that to a follow on change.
Differential Revision: D114112
If we're rotating vXi8 by a splatted amount, then unpack to vXi16, perform a SHL by the (extended) scalar, and then pack the results.
This is a vector equivalent to the "rotl(x,y) -> (((aext(x) << bw) | zext(x)) << (y & (bw-1))) >> bw" style expansion we do for scalars in LowerFunnelShift.
I think we can usefully use this for other vector types and vector funnel-shifts in the future, depending how we expand beyond D113192 for matching rotations/funnel-shifts for more type/ops.
This is preparation for D113707, where I want to make `-masm=intel`
emit `asm inteldialect` instructions.
`{movq %rbx, %rax|mov rax, rbx}` is supposed to evaluate to the bit
between { and | for att and to the bit between | and } for intel.
Since intel will become `asm inteldialect`, which alls EmitMSInlineAsmStr(),
EmitMSInlineAsmStr() has to support variants as well.
(clang translates `{...|...}` to `$(...$|...$)`. I'm not sure why
it doesn't just send along only the first `...` or the second `...`
to LLVM, but given the notes in PR23933 let's not do a big
reorganization in this codepath.)
Differential Revision: https://reviews.llvm.org/D113932
If we have a large enough floating point type that can exactly
represent the integer value, we can convert the value to FP and
use the exponent to calculate the leading/trailing zeros.
The exponent will contain log2 of the value plus the exponent bias.
We can then remove the bias and convert from log2 to leading/trailing
zeros.
This doesn't work for zero since the exponent of zero is zero so we
can only do this for CTLZ_ZERO_UNDEF/CTTZ_ZERO_UNDEF. If we need
a value for zero we can use a vmseq and a vmerge to handle it.
We need to be careful to make sure the floating point type is legal.
If it isn't we'll continue using the integer expansion. We could split the vector
and concatenate the results but that needs some additional work and evaluation.
Differential Revision: https://reviews.llvm.org/D111904
`asm` always has AT&T-style input (`asm inteldialect` has Intel-style asm
input), so EmitGCCInlineAsmStr() always has to pick the same variant since it
cares about the input asm string, not the output asm string.
For PowerPC, that default variant is 1. For other targets, it's 0.
Without this, the included test case errors out with
error: unknown use of instruction mnemonic without a size suffix
mov rax, rbx
since it picks the intel branch and then tries to interpret it as AT&T
when selecting intel-style output with `-x86-asm-syntax=intel`.
Differential Revision: https://reviews.llvm.org/D113894
In a CGSCC pass manager, we may visit the same function multiple times
due to SCC mutations. In the inliner pipeline, this results in running
the function simplification pipeline on a function multiple times even
if it hasn't been changed since the last function simplification
pipeline run.
We use a newly introduced analysis to keep track of whether or not a
function has changed since the last time the function simplification
pipeline has run on it. If we see this analysis available for a function
in a CGSCCToFunctionPassAdaptor, we skip running the function passes on
the function. The analysis is queried at the end of the function passes
so that it's available after the first time the function simplification
pipeline runs on a function. This is a per-adaptor option so it doesn't
apply to every adaptor.
The goal of this is to improve compile times. However, currently we
can't turn this on by default at least for the higher optimization
levels since the function simplification pipeline is not robust enough
to be idempotent in many cases, resulting in performance regressions if
we stop running the function simplification pipeline on a function
multiple times. We may be able to turn this on for -O1 in the near
future, but turning this on for higher optimization levels would require
more investment in the function simplification pipeline.
Heavily inspired by D98103.
Example compile time improvements with flag turned on:
https://llvm-compile-time-tracker.com/compare.php?from=998dc4a5d3491d2ae8cbe742d2e13bc1b0cacc5f&to=5c27c913687d3d5559ef3ab42b5a3d513531d61c&stat=instructions
Reviewed By: asbirlea, nikic
Differential Revision: https://reviews.llvm.org/D113947
Tsan pass does 2 optimizations based on presence of calls:
1. Don't emit function entry/exit callbacks if there are no calls
and no memory accesses.
2. Combine read/write of the same variable if there are no
intervening calls.
However, all debug info is represented as CallInst as well
and thus effectively disables these optimizations.
Don't consider debug info calls as calls.
Reviewed By: glider, melver
Differential Revision: https://reviews.llvm.org/D114079
If possible fold fneg into instruction above if users cannot fold mods and we
know it will decrease instruction count.
Follows same logic as SDAG combiner in choosing opportunities to combine.
Differential Revision: https://reviews.llvm.org/D112827
When getTypeConversion returns TypeScalarizeScalableVector we were
sometimes returning a non-simple type from getTypeLegalizationCost.
However, many callers depend upon this being a simple type and will
crash if not. This patch changes getTypeLegalizationCost to ensure
that we always a return sensible simple VT. If the vector type
contains unusual integer types, e.g. <vscale x 2 x i3>, then we just
set the type to MVT::i64 as a reasonable default.
A test has been added here that demonstrates the vectoriser can
correctly calculate the cost of vectorising a "zext i3 to i64"
instruction with a VF=vscale x 1:
Transforms/LoopVectorize/AArch64/sve-inductions-unusual-types.ll
Differential Revision: https://reviews.llvm.org/D113777
If we've only demanded the 0'th element, and it comes from a (one-use) AND, try to convert the zero_extend_vector_inreg into a mask and constant fold it with the AND.
When asking how many parts are required for a scalable vector type
there are occasions when it cannot be computed. For example, <vscale x 1 x i3>
is one such vector for AArch64+SVE because at the moment no matter how we
promote the i3 type we never end up with a legal vector. This means
that getTypeConversion returns TypeScalarizeScalableVector as the
LegalizeKind, and then getTypeLegalizationCost returns an invalid cost.
This then causes BasicTTImpl::getNumberOfParts to dereference an invalid
cost, which triggers an assert. This patch changes getNumberOfParts to
return 0 for such cases, since the definition of getNumberOfParts in
TargetTransformInfo.h states that we can use a return value of 0 to represent
an unknown answer.
Currently, LoopVectorize.cpp is the only place where we need to check for
0 as a return value, because all other instances will not currently
ask for the number of parts for <vscale x 1 x iX> types.
In addition, I have changed the target-independent interface for
getNumberOfParts to return 1 and assume there is a single register
that can fit the type. The loop vectoriser has lots of tests that are
target-independent and they relied upon the 0 value to mean the
answer is known and that we are not scalarising the vector.
I have added tests here that show we correctly return an invalid cost
for VF=vscale x 1 when the loop contains unusual types such as i7:
Transforms/LoopVectorize/AArch64/sve-inductions-unusual-types.ll
Differential Revision: https://reviews.llvm.org/D113772
Similar other cases in the current function (e.g. when the step is 1 or
-1), applying loop guards can lead to tighter upper bounds for the
backedge-taken counts.
Fixes PR52464.
Reviewed By: reames, nikic
Differential Revision: https://reviews.llvm.org/D113578
Currently the stepvector intrinsic only supports element types that
are integers of size 8 bits or more. This patch adds support for the
creation of stepvectors with smaller element types by creating
the intrinsic with i8 elements that we then truncate to the requested
size.
It's not currently possible to write a vectoriser test to exercise
this code path so I have added a unit test here:
llvm/unittests/IR/IRBuilderTest.cpp
Differential Revision: https://reviews.llvm.org/D113767
Delegate updating of LiveIntervals to each target's
convertToThreeAddress implementation, instead of repairing LiveIntervals
after the fact in TwoAddressInstruction::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D113493
This change make WidenVecRes_SELECT work for scalable vectors.
This patch is split from [D110319](https://reviews.llvm.org/D110319)
Signed-off-by: Eric Tang <tangxingxin1008@gmail.com>
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D110388
Instead of popping them and then immediately throwing them away, we can
just filter out globals and items in different scopes before adding them
to WorkList. Shouldn't change anything but keep the queue smaller.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D113864
It was being used occasionally already, and using it on the constructor
and getDbgEntityID has obvious type safety benefits.
Also use llvm_unreachable in the switch as usual, but since only these
two values are used in constructor calls I think it's still NFC.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D113862
There are multiple possible ways to represent the X - urem X, Y pattern. SCEV was not canonicalizing, and thus, depending on which you analyzed, you could get different results. The sub representation appears to produce strictly inferior results in practice, so I decided to canonicalize to the Y * X/Y version.
The motivation here is that runtime unroll produces the sub X - (and X, Y-1) pattern when Y is a power of two. SCEV is thus unable to recognize that an unrolled loop exits because we don't figure out that the new unrolled step evenly divides the trip count of the unrolled loop. After instcombine runs, we convert the the andn form which SCEV recognizes, so essentially, this is just fixing a nasty pass ordering dependency.
The ARM loop hardware interaction in the test diff is opague to me, but the comments in the review from others knowledge of the infrastructure appear to indicate these are improvements in loop recognition, not regressions.
Differential Revision: https://reviews.llvm.org/D114018
This patch adds PPC back end optimization to analyze the arguments of a
conditional trap instruction to execute one of the following:
1. Delete it if never trap
2. Replace it if always trap
3. Otherwise keep it
Reviewed By: nemanjai, amyk, PowerPC
Differential revision: https://reviews.llvm.org/D111434