Check if a remateralizable nstruction does not have any virtual
register uses. Even though rematerializable RA might not actually
rematerialize it in this scenario. In that case we do not want to
hoist such instruction out of the loop in a believe RA will sink
it back if needed.
This already has impact on AMDGPU target which does not check for
this condition in its isTriviallyReMaterializable implementation
and have instructions with virtual register uses enabled. The
other targets are not impacted at this point although will be when
D106408 lands.
Differential Revision: https://reviews.llvm.org/D107677
This moves SinkIntoLoop from MachineLICM to MachineSink. The motivation for
this work is that hoisting is a canonicalisation transformation, but we do not
really have a good story to sink instructions back if that is better, e.g. to
reduce live-ranges, register pressure and spilling. This has been discussed a
few times on the list, the latest thread is:
https://lists.llvm.org/pipermail/llvm-dev/2020-December/147184.html
There it was pointed out that we have the LoopSink IR pass, but that works on
IR, lacks register pressure informatiom, and is focused on profile guided
optimisations, and then we have MachineLICM and MachineSink that both perform
sinking. MachineLICM is more about hoisting and CSE'ing of hoisted
instructions. It also contained a very incomplete and disabled-by-default
SinkIntoLoop feature, which we now move to MachineSink.
Getting loop-sinking to do something useful is going to be at least a 3-step
approach:
1) This is just moving the code and is almost a NFC, but contains a bug fix.
This uses helper function `isLoopInvariant` that was factored out in D94082 and
added to MachineLoop.
2) A first functional change to make loop-sink a little bit less restrictive,
which it really is at the moment, is the change in D94308. This lets it do
more (alias) analysis using functions in MachineSink, making it a bit more
powerful. Nothing changes much: still off by default. But it shows that
MachineSink is a better home for this, and it starts using its functionality
like `hasStoreBetween`, and in the next step we can use `isProfitableToSinkTo`.
3) This is the going to be he interesting step: decision making when and how
many instructions to sink. This will be driven by the register pressure, and
deciding if reducing live-ranges and loop sinking will help in better
performance.
4) Once we are happy with 3), this should be enabled by default, that should be
the end goal of this exercise.
Differential Revision: https://reviews.llvm.org/D93694
This factors out code from MachineLICM that determines whether an instruction
is loop-invariant, which is a generally useful function. Thus this allows to
use that helper elsewhere too.
Differential Revision: https://reviews.llvm.org/D94082
I am investigating sinking instructions back into the loop under high
register pressure. This is just a first NFC step to add some debug
messages that allows tracing of the decision making.
Results of convergent operations are implicitly affected by the
enclosing control flows and should not be hoisted out of arbitrary
loops.
Patch by Xiaoqing Wu <xiaoqing_wu@apple.com>
Differential Revision: https://reviews.llvm.org/D90361
Summary:
Avoid exposing details about how children are stored. This will enable
subsequent type-erasure changes.
New methods are introduced to cover common access patterns.
Change-Id: Idb5f4b1b9c84e4cc71ddb39bb52a388682f5674f
Reviewers: arsenm, RKSimon, mehdi_amini, courbet
Subscribers: qcolombet, sdardis, wdng, hiraditya, jrtc27, zzheng, atanasyan, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83083
Summary:
Assert that MachineLICM does not move a debug instruction and then drop
its debug location. Later passes require each debug instruction to have
a location.
Testing: check-llvm, clang stage2 RelWithDebInfo build (x86_64)
Reviewers: aprantl, davide, chrisjackson, jmorse
Subscribers: hiraditya, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80665
This will address the issue: P8198 and P8199 (from D73534).
The methods was not handle bundles properly.
Differential Revision: https://reviews.llvm.org/D74904
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
In current Hoist() function of machine licm pass, it will not check the source and destination basic block frequencies that a instruction is hoisted from/to.
There is a chance that instruction is hoisted from a cold to a hot basic block.
In this patch, we add options to disable machine instruction hoisting if destination block is hotter.
Differential Revision: https://reviews.llvm.org/D63676
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
It looks like MCRegAliasIterator can visit the same physical register twice. When this happens in this code in LICM we end up setting the PhysRegDef and then later in the same loop visit the register again. Now we see that PhysRegDef is set from the earlier iteration so now set PhysRegClobber.
This patch splits the loop so we have one that uses the previous value of PhysRegDef to update PhysRegClobber and second loop that updates PhysRegDef.
The X86 atomic test is an improvement. I had to add sideeffect to the two shrink wrapping tests to prevent hoisting from occurring. I'm not sure about the AMDGPU tests. It looks like the branch instruction changed at end the of the loops. And in the branch-relaxation test I think there is now "and vcc, exec, -1" instruction that wasn't there before.
Differential Revision: https://reviews.llvm.org/D55102
llvm-svn: 348330
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Summary:
When checking if an instruction stores to a given frame index, check
that the instruction can write to memory before looking at the memory
operands list to avoid e.g. DBG_VALUE instructions that reference a
frame index preventing a load from that index from being hoisted.
Reviewers: dblaikie, MatzeB, qcolombet, reames, javed.absar
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D46284
llvm-svn: 331549
This patch fixes an issue exposed on the SystemZ build bots when committing
https://reviews.llvm.org/rL327856. The hoisting was temporarily disabled with
an option. This patch now re-enables hoisting and checks that we only hoist a
store instruction when all its operands are either constant caller preserved
registers or immediates.
Differential Revision: https://reviews.llvm.org/D45286
llvm-svn: 329577
The TargetSchedModel is always initialized using the TargetSubtargetInfo's
MCSchedModel and TargetInstrInfo, so we don't need to extract those and
pass 3 parameters to init().
Differential Revision: https://reviews.llvm.org/D44789
llvm-svn: 329540
This patch adds functions to allow MachineLICM to hoist invariant stores.
Currently, MachineLICM does not hoist any store instructions, however
when storing the same value to a constant spot on the stack, the store
instruction should be considered invariant and be hoisted. The function
isInvariantStore iterates each operand of the store instruction and checks
that each register operand satisfies isCallerPreservedPhysReg. The store
may be fed by a copy, which is hoisted by isCopyFeedingInvariantStore.
This patch also adds the PowerPC changes needed to consider the stack
register as caller preserved.
Differential Revision: https://reviews.llvm.org/D40196
llvm-svn: 328326
This patch adds functions to allow MachineLICM to hoist invariant stores.
Currently, MachineLICM does not hoist any store instructions, however
when storing the same value to a constant spot on the stack, the store
instruction should be considered invariant and be hoisted. The function
isInvariantStore iterates each operand of the store instruction and checks
that each register operand satisfies isCallerPreservedPhysReg. The store
may be fed by a copy, which is hoisted by isCopyFeedingInvariantStore.
This patch also adds the PowerPC changes needed to consider the stack
register as caller preserved.
Differential Revision: https://reviews.llvm.org/D40196
llvm-svn: 327856
This avoids playing games with pseudo pass IDs and avoids using an
unreliable MRI::isSSA() check to determine whether register allocation
has happened.
Note that this renames:
- MachineLICMID -> EarlyMachineLICM
- PostRAMachineLICMID -> MachineLICMID
to be consistent with the EarlyTailDuplicate/TailDuplicate naming.
llvm-svn: 322927
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Add condition for MachineLICM to safely hoist instructions that utilize
non constant registers that are reserved.
On PPC, global variable access is done through the table of contents (TOC)
which is always in register X2. The ABI reserves this register in any
functions that have calls or access global variables.
A call through a function pointer involves saving, changing and restoring
this register around the call and thus MachineLICM does not consider it to
be invariant. We can however guarantee the register is preserved across the
call and thus is invariant.
Differential Revision: https://reviews.llvm.org/D33562
llvm-svn: 305490
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Rename the DEBUG_TYPE to match the names of corresponding passes where
it makes sense. Also establish the pattern of simply referencing
DEBUG_TYPE instead of repeating the passname where possible.
llvm-svn: 303921
This prevents erratic stepping behavior as well as incorrect source attribution
for sample profiling.
Reviewers: dblakie
Subscribers: llvm-commit
Differential Revision: https://reviews.llvm.org/D27290
llvm-svn: 288442
Summary:
I want to separate out the notions of invariance and dereferenceability
at the MI level, so that they correspond to the equivalent concepts at
the IR level. (Currently an MI load is MI-invariant iff it's
IR-invariant and IR-dereferenceable.)
First step is renaming this function.
Reviewers: chandlerc
Subscribers: MatzeB, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D23370
llvm-svn: 281125