In Thumb1, only one variant is supported: CPS{effect} {flags}
Thumb2 supports three:
CPS{effect}.W {flags}
CPS{effect} {flags} {mode}
CPS {mode}
Canonically, .W should be used only when ambiguity is present between encodings of different width.
The wide suffix is still accepted for the latter two forms via aliases.
llvm-svn: 188071
Patch by Ana Pazos.
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187567
While the .td entry is nice and all, it takes a pretty gross hack in
ARMAsmParser::ParseInstruction() because of handling of other "subs"
instructions to get it to match. Ran it by Jim Grosbach and he said it was
about what he expected to make this work given the existing code.
rdar://14214063
llvm-svn: 187530
These instructions are allowed to trap even if the condition is false,
so for now they are only used for "*ptr = (cond ? x : *ptr)"-style
constructs.
llvm-svn: 187111
The atomic tests assume the two-operand forms, so I've restricted them to z10.
Running and-01.ll, or-01.ll and xor-01.ll for z196 as well as z10 shows why
using convertToThreeAddress() is better than exposing the three-operand forms
first and then converting back to two operands where possible (which is what
I'd originally tried). Using the three-operand form first stops us from
taking advantage of NG, OG and XG for spills.
llvm-svn: 186683
This first step just adds definitions for SLLK, SRLK and SRAK.
The next patch will actually make use of them during codegen.
insn-bad.s tests that some form of error is reported when using these
instructions on z10. More work is needed to get the "instruction requires:
distinct-ops" that we'd ideally like, so I've stubbed that part out for now.
I'll come back and make it mandatory once the necessary changes are in.
llvm-svn: 186680
Somehow forgot to git rm these two files. I believe I left the remaining
invalid* tests intentionally, though whether my reasons were sound is a
different matter.
llvm-svn: 186663
The tests were checking for barriers which the ARM ARM says they must execute
as a full system DMB/DSB, rather than that they're UNDEFINED and LLVM does in
fact represent them.
The tests happened to be passing because they were using a non-versioned ARM
triple which didn't have *any* DMB/DSB instructions.
llvm-svn: 186662
This allows "llvm-mc -disassemble" to accept two new features:
+ Using comma as a byte separator
+ Grouping bytes with '[' and ']' pairs.
The behaviour outside a [...] group is unchanged. But within the group once
llvm-mc encounters a true error, it stops rather than trying to resynchronise
the stream at the next byte. This is more useful for disassembly tests, where
we have an almost-instruction in mind and don't care what the misaligned
interpretation would be. Particularly if it means llvm-mc won't actually see
the next intended almost-instruction.
As a side effect, this means llvm-mc can disassemble its own -show-encoding
output if copy-pasted.
llvm-svn: 186661
RISBG has three 8-bit operands (I3, I4 and I5). I'd originally
restricted all three to 6 bits, since that's the only range we intended
to use at the time. However, the top bit of I4 acts as a "zero" flag for
RISBG, while the top bit of I3 acts as a "test" flag for RNSBG & co.
This patch therefore allows them to have the full 8-bit range.
I've left the fifth operand as a 6-bit value for now since the
upper 2 bits have no defined meaning.
llvm-svn: 186070
This adds a new decoder table/namespace 'VFPV8', as these instructions have their
top 4 bits as 0b1111, while other Thumb instructions have 0b1110.
llvm-svn: 185642
1. it should accept only 4-byte aligned addresses
2. the maximum offset should be 1020
3. it should be encoded with the offset scaled by two bits
llvm-svn: 185528
Create a dedicated register class for floating point condition code registers and
move FCC0 from register class CCR to the new register class.
llvm-svn: 185373