See the bot error message reported in https://reviews.llvm.org/D57082.
Avoid trying to match full class names in -debug-pass-manager output,
because they aren't portable.
llvm-svn: 352138
Performing splitting early has several advantages:
- Inhibiting inlining of cold code early improves code size. Compared
to scheduling splitting at the end of the pipeline, this cuts code
size growth in half within the iOS shared cache (0.69% to 0.34%).
- Inhibiting inlining of cold code improves compile time. There's no
need to inline split cold functions, or to inline as much *within*
those split functions as they are marked `minsize`.
- During LTO, extra work is only done in the pre-link step. Less code
must be inlined during cross-module inlining.
An additional motivation here is that the most common cold regions
identified by the static/conservative splitting heuristic can (a) be
found before inlining and (b) do not grow after inlining. E.g.
__assert_fail, os_log_error.
The disadvantages are:
- Some opportunities for splitting out cold code may be missed. This
gap can potentially be narrowed by adding a worklist algorithm to the
splitting pass.
- Some opportunities to reduce code size may be lost (e.g. store
sinking, when one side of the CFG diamond is split). This does not
outweigh the code size benefits of splitting earlier.
On net, splitting early in the pipeline has substantial code size
benefits, and no major effects on memory locality or performance. We
measured memory locality using ktrace data, and consistently found that
10% fewer pages were needed to capture 95% of text page faults in key
iOS benchmarks. We measured performance on frequency-stabilized iOS
devices using LNT+externals.
This reverses course on the decision made to schedule splitting late in
r344869 (D53437).
Differential Revision: https://reviews.llvm.org/D57082
llvm-svn: 352080
Currently we have pgo options defined in PassManagerBuilder.cpp only for
instrument pgo, but not for sample pgo. We also have pgo options defined
in NewPMDriver.cpp in opt only for new pass manager and for all kinds of
pgo. They have some inconsistency.
To make the options more consistent and make tests writing easier, the
patch let old pass manager to share the same pgo options with new pass
manager in opt, and removes the options in PassManagerBuilder.cpp.
Differential Revision: https://reviews.llvm.org/D56749
llvm-svn: 351392
Make sure all print statements are compatible with Python 2 and Python3 using
the `from __future__ import print_function` statement.
Differential Revision: https://reviews.llvm.org/D56249
llvm-svn: 350307
-print-after IR printing generally can not print the IR unit (Loop or SCC)
which has just been invalidated by the pass. However, when working in -print-module-scope
mode even if Loop was invalidated there is still a valid module that we can print.
Since we can not access invalidated IR unit from AfterPassInvalidated instrumentation
point we can remember the module to be printed *before* pass. This change introduces
BeforePass instrumentation that stores all the information required for module printing
into the stack and then after pass (in AfterPassInvalidated) just print whatever
has been placed on stack.
Reviewed By: philip.pfaffe
Differential Revision: https://reviews.llvm.org/D55278
llvm-svn: 349896
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
IR-printing AfterPass instrumentation might be called on a loop
that has just been invalidated. We should skip printing it to
avoid spurious asserts.
Reviewed By: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D54740
llvm-svn: 348887
It appears that print-module-scope was not implemented for legacy SCC passes.
Fixed to print a whole module instead of just current SCC.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D54793
llvm-svn: 348144
Before this commit, `llc -print-after-all` would print something like:
*** IR Dump After Pre-ISel Intrinsic Lowering ***; ModuleID = ...
Emit a newline such that ModuleID appears on a line by its own.
llvm-svn: 346844
Summary:
It turns out that we need an OptimizerLast PassBuilder extension point
after all. I missed the relevance of this EP the first time. By legacy PM magic,
function passes added at this EP get added to the last _Function_ PM, which is a
feature we lost when dropping this EP for the new PM.
A key difference between this and the legacy PassManager's OptimizerLast
callback is that this extension point is not triggered at O0. Extensions
to the O0 pipeline should append their passes to the end of the overall
pipeline.
Differential Revision: https://reviews.llvm.org/D54374
llvm-svn: 346645
We can stop recording conditions once we reached the immediate dominator
for the block containing the call site. Conditions in predecessors of the
that node will be the same for all paths to the call site and splitting
is not beneficial.
This patch makes CallSiteSplitting dependent on the DT anlysis. because
the immediate dominators seem to be the easiest way of finding the node
to stop at.
I had to update some exiting tests, because they were checking for
conditions that were true/false on all paths to the call site. Those
should now be handled by instcombine/ipsccp.
Reviewers: davide, junbuml
Reviewed By: junbuml
Differential Revision: https://reviews.llvm.org/D44627
llvm-svn: 346483
Summary:
Fix the new PM to only perform hot cold splitting once during ThinLTO,
by skipping it in the pre-link phase.
This was already fixed in the old PM by the move of the hot cold split
pass later (after the early return when PrepareForThinLTO) by r344869.
Reviewers: vsk, sebpop, hiraditya
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D53611
llvm-svn: 345096
Summary:
This patch will print out {Counter, Skip, StopAfter} info of all passes which have DebugCounter set at destruction.
It can be used to monitor how many times does certain transformation happen in a pass, and also help check if -debug-counter option is set correctly.
Please refer to this [[ http://lists.llvm.org/pipermail/llvm-dev/2018-July/124722.html | thread ]] for motivation.
Reviewers: george.burgess.iv, davide, greened
Reviewed By: greened
Subscribers: kristina, llozano, mgorny, llvm-commits, mgrang
Differential Revision: https://reviews.llvm.org/D50031
llvm-svn: 345085
Summary:
In the new+old pass manager, hot cold splitting was schedule too early.
Thanks to Vedant for pointing this out.
Reviewers: sebpop, vsk
Reviewed By: sebpop, vsk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D53437
llvm-svn: 344869
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344685
Summary:
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344519
Removing deficiency of initial implementation of -print-before-all/-after-all
- it was effectively skipping IR printing for all the SCC passes.
Now LazyCallGraph:SCC gets its IR printed.
Reviewed By: skatkov
Differential Revision: https://reviews.llvm.org/D53270
llvm-svn: 344505
If you have the string /usr/bin, prior to this patch it would not
be quoted by our YAML serializer. But a string like C:\src would
be, due to the presence of a backslash. This makes the quoting
rules of basically every single file path different depending on
the path syntax (posix vs. Windows).
While technically not required by the YAML specification to quote
forward slashes, when the behavior of paths is inconsistent it
makes it difficult to portably write FileCheck lines that will
work with either kind of path.
Differential Revision: https://reviews.llvm.org/D53169
llvm-svn: 344359
This reverts commit b86c16ad8c97dadc1f529da72a5bb74e9eaed344.
This is being reverted because I forgot to write a useful
commit message, so I'm going to resubmit it with an actual
commit message.
llvm-svn: 344358
prefix.
Use this to direct these files to a specific location in the test suite
so that we don't write files out to random directories (or fail if the
working directory isn't writable).
llvm-svn: 344014
CFGPrinter (-view-cfg, -dot-cfg) invokes an undefined behaviour (dangling
pointer to rvalue) on IR files with branch weights. This patch fixes the
problem caused by Twine initialization and string conversion split into
two statements.
This change fixes the bug 37019. A similar patch to this problem was
provided in the llvmlite project
Patch by mcopik (Marcin Copik).
Differential Revision: https://reviews.llvm.org/D52933
llvm-svn: 343984
Enable time-passes functionality through PassInstrumentation callbacks
for passes and analyses.
TimePassesHandler class keeps all the callbacks, the timing data as it
is being collected as well as the stack of currently active timers.
Parts of the fix that might be somewhat unobvious:
- mapping of passes into Timer (TimingData) can not be done per-instance.
PassID name provided into the callback is common for all the pass invocations.
Thus the only way to get a timing with reasonable granularity is to collect
timing data per pass invocation, getting a new timer for each BeforePass.
Hence the key for TimingData uses a pair of <StringRef/unsigned count> to
uniquely identify a pass invocation.
- consequently, this new-pass-manager implementation performs no aggregation
of timing data, reporting timings for each pass invocation separately.
In that it differs from legacy-pass-manager time-passes implementation that
reports timing data aggregated per pass instance.
- pass managers and adaptors are not tracked, similar to how pass managers are
not tracked in legacy time-passes.
- TimerStack tracks timers that are active, each BeforePass pushes the new timer
on stack, each AfterPass pops active timer from stack and stops it.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D51276
llvm-svn: 343898
This reverts commit r342387 as it's showing significant performance
regressions in a number of benchmarks. Followed up with the
committer and original thread with an example and will get performance
numbers before recommitting.
llvm-svn: 343522
When printing successor probabilities for a MBB, a human readable value is sometimes shown as 200.0%.
The human readable output is based on getProbabilityIterator, which returns 0xFFFFFFFF for getNumerator() and 0x80000000 for getDenominator() for unknown BranchProbability.
By using getSuccProbability as we do for the non-human readable part, we can avoid this problem.
Differential Revision: https://reviews.llvm.org/D52605
llvm-svn: 343297
Implementing -print-before-all/-print-after-all/-filter-print-func support
through PassInstrumentation callbacks.
- PrintIR routines implement printing callbacks.
- StandardInstrumentations class provides a central place to manage all
the "standard" in-tree pass instrumentations. Currently it registers
PrintIR callbacks.
Reviewers: chandlerc, paquette, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D50923
llvm-svn: 342896
As a prerequisite to time-passes implementation which needs to time both passes
and analyses, adding instrumentation points to the Analysis Manager.
The are two functional differences between Pass and Analysis instrumentation:
- the latter does not increment pass execution counter
- it does not provide ability to skip execution of the corresponding analysis
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D51275
llvm-svn: 342778
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
Rebase rL341954 since https://bugs.llvm.org/show_bug.cgi?id=38912
has been fixed by rL342055.
Precommit testing performed:
* Overnight runs of csmith comparing the output between programs
compiled with gvn-hoist enabled/disabled.
* Bootstrap builds of clang with UbSan/ASan configurations.
llvm-svn: 342387
This test constructs a non-readable file of mode 0111, which lingers in the test output directory and will cause EACCES to various tools (rg, rsync, ...)
llvm-svn: 342279
This adds DebugCounter support to the PartiallyInlineLibCalls pass,
which should make debugging/automated bisection easier in the future.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50093
llvm-svn: 342172
This reverts rL341954.
The builder `sanitizer-x86_64-linux-bootstrap-ubsan` has been
failing with timeouts at stage2 clang/ubsan:
[3065/3073] Linking CXX executable bin/lld
command timed out: 1200 seconds without output running python
../sanitizer_buildbot/sanitizers/buildbot_selector.py,
attempting to kill
llvm-svn: 342001
This patch does the following things:
1. update SymbolicallyEvaluateGEP so that it bails out if it cannot preserve inrange arribute;
2. update llvm/test/Analysis/ConstantFolding/gep.ll to remove UB in it;
3. remove inaccurate comment above ConstantFoldInstOperandsImpl in llvm/lib/Analysis/ConstantFolding.cpp;
4. add a new regression test that makes sure that no optimizations change an inrange GEP in an unexpected way.
Patch by Zhaomo Yang!
Differential Revision: https://reviews.llvm.org/D51698
llvm-svn: 341888
Just was made aware that this is necessary for tests outside of
the X86 subdirectory. Add a REQUIRES line to make sure bots that
don't enable x86 are happy.
llvm-svn: 341885
This adds per-function size remarks to codegen, similar to what we have in the
IR layer as of r341588. This only impacts MachineFunctionPasses.
This does the same thing, but for `MachineInstr`s instead of just
`Instructions`. After this, when a `MachineFunctionPass` modifies the number of
`MachineInstr`s in the function it ran on, you'll get a remark.
To enable this, use the size-info analysis remark as before.
llvm-svn: 341876
This patch adds per-function size information remarks. Previously, passing
-Rpass-analysis=size-info would only give you per-module changes. By adding
the ability to do this per-function, it's easier to see which functions
contributed the most to size changes.
https://reviews.llvm.org/D51467
llvm-svn: 341588
Summary:
Refactoring done by rL340872 accidentally appeared to be non-NFC, changing the way how
multiple instances of the same pass are handled - aggregation of results by PassName
forced data for multiple instances to be merged together and reported as one line.
Getting back to creating/reporting timers per pass instance.
Reporting was a bit enhanced by counting pass instances and adding #<num> suffix
to the pass description. Note that it is instances that are being counted,
not invocations of them.
time-passes test updated to account for multiple passes being run.
Reviewers: paquette, jhenderson, MatzeB, skatkov
Reviewed By: skatkov
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51535
llvm-svn: 341346
ModuleCount = InstrCount was incorrect. It should have been
InstrCount = ModuleCount. This was making it emit an extra, incorrect remark
for Print Module IR.
The test didn't catch this, because it didn't ensure that the only remark
output was from the desired pass. So, it was possible to have an extra remark
come through and not fail. Updated the test so that we ensure that the last
remark that's output comes from the desired pass. This is done by ensuring
that whatever is being read after the last remark is YAML output rather than
some incorrect garbage.
llvm-svn: 341267
Rebase rL338240 since the excessive memory usage observed when using
GVNHoist with UBSan has been fixed by rL340818.
Differential Revision: https://reviews.llvm.org/D49858
llvm-svn: 340922
Moving PassTimingInfo from legacy pass manager code into a separate header.
Making it suitable for both legacy and new pass manager.
Adding a test on -time-passes main functionality.
llvm-svn: 340872
This version of the patch fixes cleaning up ssa_copy intrinsics, so it does not
crash for instructions in blocks that have been marked unreachable.
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
Differential Revision: https://reviews.llvm.org/D45330
llvm-svn: 340525
Changes the default Windows target triple returned by
GetHostTriple.cmake from the old environment names (which we wanted to
move away from) to newer, normalized ones. This also requires updating
all tests to use the new systems names in constraints.
Differential Revision: https://reviews.llvm.org/D47381
llvm-svn: 339307
This fixes an inconsistency in code generation when compiling with or
without debug information (-g). When debug information is available in
an empty block, the original test would fail, resulting in possibly
different code.
Patch by: Jeroen Dobbelaere
Differential revision: https://reviews.llvm.org/D49467
llvm-svn: 339129
Summary:
The issue with the python path is that the path to python on Windows can contain spaces. To make the tests always work, the path to python needs to be surrounded by quotes.
This change updates several configuration files which specify the path to python as a substitution and also remove quotes from existing tests.
Reviewers: asmith, zturner, alexshap, jakehehrlich
Reviewed By: zturner, alexshap, jakehehrlich
Subscribers: mehdi_amini, nemanjai, eraman, kbarton, jakehehrlich, steven_wu, dexonsmith, stella.stamenova, delcypher, llvm-commits
Differential Revision: https://reviews.llvm.org/D50206
llvm-svn: 339073
(Previously reverted in r338442)
I'm told that the breakage came from us using an x86 triple on configs
that didn't have x86 enabled. This is remedied by moving the
debugcounter test to an x86 directory (where there's also a
opt-bisect-isel.ll test for similar reasons).
I can't repro the reverse-iteration failure mentioned in the revert with
this patch, so I assume that a misconfiguration on my end is what caused
that.
Original commit message:
Add DebugCounters to DivRemPairs
For people who don't use DebugCounters, NFCI.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50033
llvm-svn: 338653
This is being done in order to make GVN able to better optimize certain inputs.
MemDep doesn't use PhiValues directly, but does need to notifiy it when things
get invalidated.
Differential Revision: https://reviews.llvm.org/D48489
llvm-svn: 338384
The combination of r338240 and r338242 causes the opt pass pipeline tests to
fail because of how r338242 makes BasicAA be invalidated more often. Adjust the
tests to reflect this.
llvm-svn: 338250
By using PhiValuesAnalysis we can get all the values reachable from a phi, so
we can be more precise instead of giving up when a phi has phi operands. We
can't make BaseicAA directly use PhiValuesAnalysis though, as the user of
BasicAA may modify the function in ways that PhiValuesAnalysis can't cope with.
For this optional usage to work correctly BasicAAWrapperPass now needs to be not
marked as CFG-only (i.e. it is now invalidated even when CFG is preserved) due
to how the legacy pass manager handles dependent passes being invalidated,
namely the depending pass still has a pointer to the now-dead dependent pass.
Differential Revision: https://reviews.llvm.org/D44564
llvm-svn: 338242
r337828 resolves a PredicateInfo issue with unnamed types.
Original message:
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
llvm-svn: 337904
This is a workaround and it would be better to fix this generally, but
doing it generally is quite tricky. See D48541 and PR38117.
Doing it in PredicateInfo directly allows us to use the type address to
differentiate different unnamed types, because neither the created
declarations nor the ssa_copy calls should be visible after
PredicateInfo got destroyed.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D49126
llvm-svn: 337828
Summary:
Enable these passes for CFI and WPD in ThinLTO and LTO with the new pass
manager. Add a couple of tests for both PMs based on the clang tests
tools/clang/test/CodeGen/thinlto-distributed-cfi*.ll, but just test
through llvm-lto2 and not with distributed ThinLTO.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49429
llvm-svn: 337461
This changes `-print-*` from transformation passes to analysis passes so
that `-print-after-all` and `-print-before-all` don't trigger. This
avoids some redundant output.
Patch by Son Tuan Vu!
llvm-svn: 336869
Summary:
PGOMemOPSize only modifies CFG in a couple of places; thus we can preserve the DominatorTree with little effort.
When optimizing SQLite with -O3, this patch can decrease 3.8% of the numbers of nodes traversed by DFS and 5.7% of the times DominatorTreeBase::recalculation is called.
Reviewers: kuhar, davide, dmgreen
Reviewed By: dmgreen
Subscribers: mzolotukhin, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D48914
llvm-svn: 336522
Summary:
This patch introduce new intrinsic -
strip.invariant.group that was described in the
RFC: Devirtualization v2
Reviewers: rsmith, hfinkel, nlopes, sanjoy, amharc, kuhar
Subscribers: arsenm, nhaehnle, JDevlieghere, hiraditya, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47103
Co-authored-by: Krzysztof Pszeniczny <krzysztof.pszeniczny@gmail.com>
llvm-svn: 336073
and diretory.
Also cleans up all the associated naming to be consistent and removes
the public access to the pass ID which was unused in LLVM.
Also runs clang-format over parts that changed, which generally cleans
up a bunch of formatting.
This is in preparation for doing some internal cleanups to the pass.
Differential Revision: https://reviews.llvm.org/D47352
llvm-svn: 336028
Extends the CFGPrinter and CallPrinter with heat colors based on heuristics or
profiling information. The colors are enabled by default and can be toggled
on/off for CFGPrinter by using the option -cfg-heat-colors for both
-dot-cfg[-only] and -view-cfg[-only]. Similarly, the colors can be toggled
on/off for CallPrinter by using the option -callgraph-heat-colors for both
-dot-callgraph and -view-callgraph.
Patch by Rodrigo Caetano Rocha!
Differential Revision: https://reviews.llvm.org/D40425
llvm-svn: 335996
SCCP does not change the CFG, so we can mark it as preserved.
Reviewers: dberlin, efriedma, davide
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D47149
llvm-svn: 335820
=== Generating the CG Profile ===
The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.
After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
```
!llvm.module.flags = !{!0}
!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
```
Differential Revision: https://reviews.llvm.org/D48105
llvm-svn: 335794
This is the first pass in the main pipeline to use the legacy PM's
ability to run function analyses "on demand". Unfortunately, it turns
out there are bugs in that somewhat-hacky approach. At the very least,
it leaks memory and doesn't support -debug-pass=Structure. Unclear if
there are larger issues or not, but this should get the sanitizer bots
back to green by fixing the memory leaks.
llvm-svn: 335320
This wasn't obvious for the author to fix because this is the first
pipeline use of the magic utility to get function analyses within
a module pass in the lagecy pass manager. Turns out that has a bug which
prevents dumping the structure of the pipeline and shows up as an
unnamed pass.
I've just left a FIXME for that as it doesn't seem likely worth fixing
and certainly shouldn't hold up getting the bots green.
llvm-svn: 335314
This reverts commit r335206.
As discussed here: https://reviews.llvm.org/rL333740, a fix will come
tomorrow. In the meanwhile, revert this to fix some bots.
llvm-svn: 335272
r335150 should resolve the issues with the clang-with-thin-lto-ubuntu
and clang-with-lto-ubuntu builders.
Original message:
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
llvm-svn: 335206
Summary:
We only modify CFG in a couple of places, and we can preserve DT there
with a little effort.
Reviewers: davide, vsk
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D48059
llvm-svn: 334895
When using clang --save-stats -mllvm -time-passes, both timers and stats
end up in the same json file.
We could end up with things like:
{
"asm-printer.EmittedInsts": 1,
"time.pass.Virtual Register Map.wall": 2.9015541076660156e-04,
"time.pass.Virtual Register Map.user": 2.0500000000000379e-04,
"time.pass.Virtual Register Map.sys": 8.5000000000001741e-05,
}
This patch makes use of the pass argument name (if available) in the
JSON key to end up with things like:
{
"asm-printer.EmittedInsts": 1,
"time.pass.virtregmap.wall": 2.9015541076660156e-04,
"time.pass.virtregmap.user": 2.0500000000000379e-04,
"time.pass.virtregmap.sys": 8.5000000000001741e-05,
}
This also helps avoiding to write another JSON printer to handle all the
cases that we could have in our pass names.
Fixed test instead of adding a new one originally from r334649.
Differential Revision: https://reviews.llvm.org/D48109
llvm-svn: 334657
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
Differential Revision: https://reviews.llvm.org/D45330
llvm-svn: 333740
loop-cleanup passes at the beginning of the loop pass pipeline, and
re-enqueue loops after even trivial unswitching.
This will allow us to much more consistently avoid simplifying code
while doing trivial unswitching. I've also added a test case that
specifically shows effective iteration using this technique.
I've unconditionally updated the new PM as that is always using the
SimpleLoopUnswitch pass, and I've made the pipeline changes for the old
PM conditional on using this new unswitch pass. I added a bunch of
comments to the loop pass pipeline in the old PM to make it more clear
what is going on when reviewing.
Hopefully this will unblock doing *partial* unswitching instead of just
full unswitching.
Differential Revision: https://reviews.llvm.org/D47408
llvm-svn: 333493
Reverting this to see if this is causing the failures of the
clang-with-thin-lto-ubuntu bot.
[IPSCCP] Use PredicateInfo to propagate facts from cmp instructions.
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
Differential Revision: https://reviews.llvm.org/D45330
llvm-svn: 333323
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
Differential Revision: https://reviews.llvm.org/D45330
llvm-svn: 333268
This patch adds a remark which tells the user when a pass changes the number of
IR instructions in a module.
It can be enabled by using -Rpass-analysis=size-info.
The point of this is to make it easier to collect statistics on how passes
modify programs in terms of code size. This is similar in concept to timing
reports, but using a remark-based interface makes it easy to diff changes over
multiple compilations of the same program.
By adding functionality like this, we can see
* Which passes impact code size the most
* How passes impact code size at different optimization levels
* Which pass might have contributed the most to an overall code size
regression
The patch lives in the legacy pass manager, but since it's simply emitting
remarks, it shouldn't be too difficult to adapt the functionality to the new
pass manager as well. This can also be adapted to handle MachineInstr counts in
code gen passes.
https://reviews.llvm.org/D38768
llvm-svn: 332739
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Summary: Makes this consistent with the old PM.
Reviewers: eraman
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D46526
llvm-svn: 331709
It turned out that readonly argmemonly is not enough.
store 42, %p
%b = barrier(%p)
store 43, %b
the first store is dead, but because barrier was marked as
reading argument memory, it was considered alive. With
inaccessiblememonly it doesn't read the argument, but
it also can't be CSEd.
based on: https://reviews.llvm.org/D32006
llvm-svn: 331338