This is meant to be used with clang's __builtin_dynamic_object_size.
When 'true' is passed to this parameter, the intrinsic has the
potential to be folded into instructions that will be evaluated
at run time. When 'false', the objectsize intrinsic behaviour is
unchanged.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56761
llvm-svn: 352664
It now knows the tricks of both functions.
Also, fix a bug that considered allocas of non-zero address space to be always non null
Differential Revision: https://reviews.llvm.org/D37628
llvm-svn: 312869
This was just a bad oversight on my part. The code in question should
never have worked without this fix. But it turns out, there are
relatively few places that involve libfunctions that participate in
a single SCC, and unless they do, this happens to not matter.
The effect of not having this correct is that each time through this
routine, the edge from write_wrapper to write was toggled between a call
edge and a ref edge. First time through, it becomes a demoted call edge
and is turned into a ref edge. Next time it is a promoted call edge from
a ref edge. On, and on it goes forever.
I've added the asserts which should have always been here to catch silly
mistakes like this in the future as well as a test case that will
actually infloop without the fix.
The other (much scarier) infinite-inlining issue I think didn't actually
occur in practice, and I simply misdiagnosed this minor issue as that
much more scary issue. The other issue *is* still a real issue, but I'm
somewhat relieved that so far it hasn't happened in real-world code
yet...
llvm-svn: 310342
functions.
In the prior commit, we provide ordering to the LCG between functions
and library function definitions that they might begin to call through
transformations. But we still would delete these library functions from
the call graph if they became dead during inlining.
While this immediately crashed, it also exposed a loss of information.
We shouldn't remove definitions of library functions that can still
usefully participate in the LCG-powered CGSCC optimization process. If
new call edges are formed, we want to have definitions to be called.
We can still remove these functions if truly dead using global-dce, etc,
but removing them during the CGSCC walk is premature.
This fixes a crash in the new PM when optimizing some unusual libraries
that end up with "internal" lib functions such as the code in the "R"
language's libraries.
llvm-svn: 308417
function to every defined function known to LLVM as a library function.
LLVM can introduce calls to these functions either by replacing other
library calls or by recognizing patterns (such as memset_pattern or
vector math patterns) and replacing those with calls. When these library
functions are actually defined in the module, we need to have reference
edges to them initially so that we visit them during the CGSCC walk in
the right order and can effectively rebuild the call graph afterward.
This was discovered when building code with Fortify enabled as that is
a common case of both inline definitions of library calls and
simplifications of code into calling them.
This can in extreme cases of LTO-ing with libc introduce *many* more
reference edges. I discussed a bunch of different options with folks but
all of them are unsatisfying. They either make the graph operations
substantially more complex even when there are *no* defined libfuncs, or
they introduce some other complexity into the callgraph. So this patch
goes with the simplest possible solution of actual synthetic reference
edges. If this proves to be a memory problem, I'm happy to implement one
of the clever techniques to save memory here.
llvm-svn: 308088