- This allow us to specify the (minimal) alignment on an intrinsic's
arguments and, more importantly, the return value.
Differential Revision: https://reviews.llvm.org/D80422
- Argument attribute needs specifiying through `ArgIndex<n>`
(corresponding to `FirstArgIndex`) to distinguish explicitly from the
index number from the overloaded type list.
- In addition, `RetIndex` (corresponding to `ReturnIndex`) and
`FuncIndex` (corresponding to `FunctionIndex`) are introduced for us
to associate attributes on the return value and potentially function
itself.
Differential Revision: https://reviews.llvm.org/D80422
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
AMDGPU was the last in tree target to use this tablegen mode. I plan to
split up the global intrinsic enum similar to the way that clang
diagnostics are split up today. I don't plan to build on this mode.
Reviewers: arsenm, echristo, efriedma
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D71318
Summary:
This allows intrinsics such as the following to be defined:
- declare <n x 4 x i32> @llvm.something.nxv4f32(<n x 4 x i32>, <n x 4 x i1>, <n x 4 x float>)
...where <n x 4 x i32> is derived from <n x 4 x float>, but
the element needs bitcasting to int.
Reviewers: c-rhodes, sdesmalen, rovka
Reviewed By: c-rhodes
Subscribers: tschuett, hiraditya, jdoerfert, llvm-commits, cfe-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68021
llvm-svn: 373437
Summary:
Both match the type of another intrinsic parameter of a vector type, but where each element is subdivided to form a vector with more elements of a smaller type.
Subdivide2Argument allows intrinsics such as the following to be defined:
- declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 8 x i16>)
Subdivide4Argument allows intrinsics such as:
- declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 16 x i8>)
Tests are included in follow up patches which add intrinsics using these types.
Reviewers: sdesmalen, SjoerdMeijer, greened, rovka
Reviewed By: sdesmalen
Subscribers: rovka, tschuett, jdoerfert, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67549
llvm-svn: 372380
Summary:
This patch adds support for scalable vectors in intrinsics, enabling
intrinsics such as the following to be defined:
declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 4 x i32>)
Support for this is implemented by defining a new type descriptor for
scalable vectors and adding mangling support for scalable vector types
in the name mangling scheme used by 'any' types in intrinsic signatures.
Tests have been added for IRBuilder to test scalable vectors work as
expected when using intrinsics through this interface. This required
implementing an intrinsic that is explicitly defined with scalable
vectors, e.g. LLVMType<nxv4i32>, an SVE floating-point convert
intrinsic was used for this. The behaviour of the overloaded type
LLVMScalarOrSameVectorWidth with scalable vectors is tested using the
existing masked load intrinsic. Also added an .ll test to test the
Verifier catches a bad intrinsic argument when passing a fixed-width
predicate (mask) to the masked.load intrinsic where a scalable is
expected.
Patch by Paul Walker
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D65930
llvm-svn: 370053
AMDGPU has some buffer intrinsics which theoretically could use
this. Some of the generated tables include the 3 and 4 element vector
versions of these rounded to 64-bits, which is ambiguous. Add these to
help the table disambiguate these.
Assertion change is for the path odd sized vectors now take for R600.
v3i16 is widened to v4i16, which then needs to be promoted to v4i32.
llvm-svn: 369038
Summary:
Deduce the "willreturn" attribute for functions.
For now, intrinsics are not willreturn. More annotation will be done in another patch.
Reviewers: jdoerfert
Subscribers: jvesely, nhaehnle, nicholas, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63046
llvm-svn: 366335
If an intrinsic is defined without outputs, but having side effects,
it still can be removed completely from the program. This patch makes
TableGen not set Attribute::ReadNone for intrinsics which
are declared with IntrHasSideEffects.
Differential Revision: https://reviews.llvm.org/D64414
llvm-svn: 366312
r363233 rewrote a bunch of the Intrin Emitter code, however the new
function to update the arg codes did not properly consider a pointer to
an any. This patch adds that logic.
Differential Revision: https://reviews.llvm.org/D63507
llvm-svn: 364364
This patch uses the mechanism from D62995 to strengthen the
definitions of the reduction intrinsics by letting the scalar
result/accumulator type be overloaded from the vector element type.
For example:
; The LLVM LangRef specifies that the scalar result must equal the
; vector element type, but this is not checked/enforced by LLVM.
declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
This patch changes that into:
declare i32 @llvm.experimental.vector.reduce.or.v4i32(<4 x i32> %a)
Which has the type-constraint more explicit and causes LLVM to check
the result type with the vector element type.
Reviewers: RKSimon, arsenm, rnk, greened, aemerson
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62996
llvm-svn: 363240
Extend the mechanism to overload intrinsic arguments by using either
backward or forward references to the overloadable arguments.
In for example:
def int_something : Intrinsic<[LLVMPointerToElt<0>],
[llvm_anyvector_ty], []>;
LLVMPointerToElt<0> is a forward reference to the overloadable operand
of type 'llvm_anyvector_ty' and would allow intrinsics such as:
declare i32* @llvm.something.v4i32(<4 x i32>);
declare i64* @llvm.something.v2i64(<2 x i64>);
where the result pointer type is deduced from the element type of the
first argument.
If the returned pointer is not a pointer to the element type, LLVM will
give an error:
Intrinsic has incorrect return type!
i64* (<4 x i32>)* @llvm.something.v4i32
Reviewers: RKSimon, arsenm, rnk, greened
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62995
llvm-svn: 363233
This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
Summary:
While working on the GISel Combiner, I noticed I was producing location-less
error messages fairly often and set about fixing this. In the process, I
noticed quite a few places elsewhere in TableGen that also neglected to include
a relevant location.
This patch adds locations to errors that relate to a specific record (or a
field within it) and also have easy access to the relevant location. This is
particularly useful when multiclasses are involved as many of these errors
refer to the full name of a record and it's difficult to guess which substring
is grep-able.
Unfortunately, tablegen currently only supports Record granularity so it's not
currently possible to point at a specific Init so these sometimes point at the
record that caused the error rather than the precise origin of the error.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, nhaehnle
Reviewed By: nhaehnle
Subscribers: jdoerfert, nhaehnle, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58077
llvm-svn: 353862
This patch replaces the existing LLVMVectorSameWidth matcher with LLVMScalarOrSameVectorWidth.
The matching args must be either scalars or vectors with the same number of elements, but in either case the scalar/element type can differ, specified by LLVMScalarOrSameVectorWidth.
I've updated the _overflow intrinsics to demonstrate this - allowing it to return a i1 or <N x i1> overflow result, matching the scalar/vectorwidth of the other (add/sub/mul) result type.
The masked load/store/gather/scatter intrinsics have also been updated to use this, although as we specify the reference type to be llvm_anyvector_ty we guarantee the mask will be <N x i1> so no change in behaviour
Differential Revision: https://reviews.llvm.org/D57090
llvm-svn: 351957
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
A call to @llvm.trap can be expected to be cold (i.e. unlikely to be
reached in a normal program execution).
Outlining paths which unconditionally trap is an important memory
saving. As the hot/cold splitting pass (imho) should not treat all
noreturn calls as cold, explicitly mark @llvm.trap cold so that it can
be outlined.
Split out of https://reviews.llvm.org/D54244.
Differential Revision: https://reviews.llvm.org/D54329
llvm-svn: 346885
Implements PR34259
Intrinsics.h is a very popular header. Most LLVM TUs care about things
like dbg_value, but they don't care how they are implemented. After I
split these out, IntrinsicImpl.inc is 1.7 MB, so this saves each LLVM TU
from scanning 1.7 MB of source that gets pre-processed away.
It also means we can modify intrinsic properties without triggering a
full rebuild, but that's probably less of a win.
I think the next best thing to do would be to split out the target
intrinsics into their own header. Very, very few TUs care about
target-specific intrinsics. It's very hard to split up the target
independent intrinsics like llvm.expect, assume, and dbg.value, though.
llvm-svn: 335407
Summary:
Do three things to help with that:
- Add AttributeList::FirstArgIndex, which is an enumerator currently set
to 1. It allows us to change the indexing scheme with fewer changes.
- Add addParamAttr/removeParamAttr. This just shortens addAttribute call
sites that would otherwise need to spell out FirstArgIndex.
- Remove some attribute-specific getters and setters from Function that
take attribute list indices. Most of these were only used from
BuildLibCalls, and doesNotAlias was only used to test or set if the
return value is malloc-like.
I'm happy to split the patch, but I think they are probably easier to
review when taken together.
This patch should be NFC, but it sets the stage to change the indexing
scheme to this, which is more convenient when indexing into an array:
0: func attrs
1: retattrs
2...: arg attrs
Reviewers: chandlerc, pete, javed.absar
Subscribers: david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D32811
llvm-svn: 302060
Fixes PR31789 - When loop-vectorize tries to use these intrinsics for a
non-default address space pointer we fail with a "Calling a function with a
bad singature!" assertion. This patch solves this by adding the 'vector of
pointers' argument as an overloaded type which will determine the address
space.
Differential revision: https://reviews.llvm.org/D31490
llvm-svn: 302018
The IntrNoMem, IntrReadMem, IntrWriteMem, and IntrArgMemOnly intrinsic
properties differ from their corresponding LLVM IR attributes by specifying
that the intrinsic, in addition to its memory properties, has no other side
effects.
The IntrHasSideEffects flag used in combination with one of the memory flags
listed above, makes it possible to define an intrinsic such that its
properties at the CodeGen layer match its properties at the IR layer.
Patch by Tom Stellard
llvm-svn: 301685
Patch by Ettore Speziale
Allow TableGen to generate static functions to perform GCC/MS builtin name to
target specific intrinsic ID mapping.
https://reviews.llvm.org/D31150
llvm-svn: 300735
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Use the qualified name for StringLiteral (llvm::StringLiteral) when
generating the sources. This is needed as the generated files may be
used out-of-tree (e.g. swift) where you may not have a
`using namespace llvm;` resulting in an undefined lookup.
llvm-svn: 293577
2 new intrinsics covering AVX-512 compress/expand functionality.
This implementation includes syntax, DAG builder, operation lowering and tests.
Does not include: handling of illegal data types, codegen prepare pass and the cost model.
llvm-svn: 285876
The sanitizer-windows bot turned red with:
FAILED: utils/TableGen/CMakeFiles/obj.llvm-tblgen.dir/IntrinsicEmitter.cpp.obj
C:\PROGRA~2\MICROS~1.0\VC\bin\AMD64_~2\cl.exe ... -c
C:\...\llvm\utils\TableGen\IntrinsicEmitter.cpp
c:\...\llvm\utils\tablegen\intrinsicemitter.cpp(254) :
fatal error C1001: An internal error has occurred in the compiler.
http://lab.llvm.org:8011/builders/sanitizer-windows/builds/114/steps/build%20clang%20lld/logs/stdio
llvm-svn: 285089
This splits out the intrinsic table such that generic intrinsics come
first and target specific intrinsics are grouped by target. From here
we can find out which target an intrinsic is for or differentiate
between generic and target intrinsics.
The motivation here is to make it easier to move target specific
intrinsic handling out of generic code.
llvm-svn: 275575
Summary:
This complements the earlier addition of IntrWriteMem and IntrWriteArgMem
LLVM intrinsic properties, see D18291.
Also start using the attribute for memset, memcpy, and memmove intrinsics,
and remove their special-casing in BasicAliasAnalysis.
Reviewers: reames, joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18714
llvm-svn: 274485
Summary:
This property is used to mark an intrinsic that only writes to memory, but
neither reads from memory nor has other side effects.
An example where this is useful is the llvm.amdgcn.buffer.store.format.*
intrinsic, which corresponds to a store instruction that goes through a special
buffer descriptor rather than through a plain pointer.
With this property, the intrinsic should still be handled as having side
effects at the LLVM IR level, but machine scheduling can make smarter
decisions.
Reviewers: tstellarAMD, arsenm, joker.eph, reames
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18291
llvm-svn: 266826