vectors. It operates on 128-bit elements instead of regular scalar
types. Recognize shuffles that are suitable for VPERM2F128 and teach
the x86 legalizer how to handle them.
llvm-svn: 137519
(for example, after integer operation), do not pack the registers into a YMM
before saving. Its better to save as two XMM registers.
Before:
vinsertf128 $1, %xmm3, %ymm0, %ymm3
vinsertf128 $0, %xmm1, %ymm3, %ymm1
vmovaps %ymm1, 416(%rsp)
After:
vmovaps %xmm3, 416+16(%rsp)
vmovaps %xmm1, 416(%rsp)
llvm-svn: 137308
data in-register prior to saving to memory. When we reorder the data in memory
we prevent the need to save multiple scalars to memory, making a single regular
store.
llvm-svn: 137238
def : Pat<(X86Movss VR128:$src1,
(bc_v4i32 (v2i64 (load addr:$src2)))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
This matches a MOVSS dag with a MOVLPS instruction. However, MOVSS will replace only the low 32 bits of the register, while the MOVLPS instruction will replace the low 64 bits. A testcase is added and illustrates the bug and also modified the one that was already present. Patch by Tanya Lattner.
llvm-svn: 137227
X86FloatingPoint keeps track of pending ST registers for an upcoming
inline asm instruction with fixed stack register constraints. It does
this by remembering which FP register holds the value that should appear
at a fixed stack position for the inline asm.
When that FP register is killed before the inline asm, make sure to
duplicate it to a scratch register, so the ST register still has a live
FP reference.
This could happen when the same FP register was copied to two ST
registers, or when a spill instruction is inserted between the ST copy
and the inline asm.
This fixes PR10602.
llvm-svn: 137050
avoid returning early for v8i32 types, which would only be valid for
vector with all zeros. Also split the handling of zeros and ones into separate
checking logic since they are handled differently. This fixes PR10547
llvm-svn: 136642
working on x86 (at least for trivial testcases); other architectures will
need more work so that they actually emit the appropriate instructions for
orderings stricter than 'monotonic'. (As far as I can tell, the ARM, PPC,
Mips, and Alpha backends need such changes.)
llvm-svn: 136457
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
LLVM*AsmPrinter.
GenLibDeps.pl fails to detect vtable references. As this is the only
referenced symbol from LLVM*Desc to LLVM*AsmPrinter on optimized
builds, the algorithm that creates the list of libraries to be linked
into tools doesn't know about the dependency and sometimes places the
libraries on the wrong order, yielding error messages like this:
../../lib/libLLVMARMDesc.a(ARMMCTargetDesc.cpp.o): In function
`llvm::ARMInstPrinter::ARMInstPrinter(llvm::MCAsmInfo const&)':
ARMMCTargetDesc.cpp:(.text._ZN4llvm14ARMInstPrinterC1ERKNS_9MCAsmInfoE
[llvm::ARMInstPrinter::ARMInstPrinter(llvm::MCAsmInfo
const&)]+0x2a): undefined reference to `vtable for
llvm::ARMInstPrinter'
llvm-svn: 136328
This can happen in cases where TableGen generated asm matcher cannot check
whether a register operand is in the right register class. e.g. mem operands.
rdar://8204588
llvm-svn: 136292
llvm-mc gives an "invalid operand" error for instructions that take an unsigned
immediate which have the high bit set such as:
pblendw $0xc5, %xmm2, %xmm1
llvm-mc treats all x86 immediates as signed values and range checks them.
A small number of x86 instructions use the imm8 field as a set of bits.
This change only changes those instructions and where the high bit is not
ignored. The others remain unchanged.
llvm-svn: 136287
usage of the shuffle bitmask. Both work in 128-bit lanes without
crossing, but in the former the mask of the high part is the same
used by the low part while in the later both lanes have independent
masks. Handle this properly and and add support for vpermilpd.
llvm-svn: 136200
On x86 we can't encode an immediate LHS of a sub directly. If the RHS comes from a XOR with a constant we can
fold the negation into the xor and add one to the immediate of the sub. Then we can turn the sub into an add,
which can be commuted and encoded efficiently.
This code is generated for __builtin_clz and friends.
llvm-svn: 136167
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
llvm-svn: 136023
shuffle before inserting on a 256-bit vector.
- Add AVX versions of movd/movq instructions
- Introduce a few COPY patterns to match insert_subvector instructions.
This turns a trivial insert_subvector instruction into a register copy,
coalescing the xmm into a ymm and avoid emiting on more instruction.
llvm-svn: 136002
unwind encoding for that function. This simply crawls through the prolog looking
for machine instrs marked as "frame setup". It can calculate from these what the
compact unwind should look like.
This is currently disabled because of needed linker support. But initial tests
look good.
llvm-svn: 135922
the way to go. Doing this here will prevent several node matches later,
and would have to force looking all the way through several
VINSERTF128/VEXTRACTF128 chains to optimize simple things.
llvm-svn: 135730
and was actually very wrong, fix it and make it simpler. Also remove the
ConcatVectors function, which is unused now.
- Fix a introduction of useless nodes in r126664 and r126264. The
VUNPCKL* should never be introduced cause we don't want duplicate
nodes for 128 AVX and non-AVX modes, the actual instruction
difference only exists during isel, but not for target specific DAG
nodes. We only introduce V* target nodes when there is no 128-bit
version already there.
- Fix a fragile test and make it more useful.
llvm-svn: 135729
instruction introduced in AVX, which can operate on 128 and 256-bit vectors.
It considers a 256-bit vector as two independent 128-bit lanes. It can permute
any 32 or 64 elements inside a lane, and restricts the second lane to
have the same permutation of the first one. With the improved splat support
introduced early today, adding codegen for this instruction enable more
efficient 256-bit code:
Instead of:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vextractf128 $1, %ymm0, %xmm1
shufps $1, %xmm1, %xmm1
movss %xmm1, 28(%rsp)
movss %xmm1, 24(%rsp)
movss %xmm1, 20(%rsp)
movss %xmm1, 16(%rsp)
vextractf128 $0, %ymm0, %xmm0
shufps $1, %xmm0, %xmm0
movss %xmm0, 12(%rsp)
movss %xmm0, 8(%rsp)
movss %xmm0, 4(%rsp)
movss %xmm0, (%rsp)
vmovaps (%rsp), %ymm0
We get:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vpermilps $85, %ymm0, %ymm0
llvm-svn: 135662
refactor the code and add a bunch of comments. The final shuffle
emitted by handling 256-bit types is suitable for the VPERM shuffle
instruction which is going to be introduced in a next commit (with
a testcase which cover this commit)
llvm-svn: 135661
- Introduce JITDefault code model. This tells targets to set different default
code model for JIT. This eliminates the ugly hack in TargetMachine where
code model is changed after construction.
llvm-svn: 135580
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
llvm-svn: 135468
to MCRegisterInfo. Also initialize the mapping at construction time.
This patch eliminate TargetRegisterInfo from TargetAsmInfo. It's another step
towards fixing the layering violation.
llvm-svn: 135424
1) Make non-legal 256-bit loads to be promoted to v4i64. This lets us
canonize the loads and handle things the same way we use to handle
for 128-bit registers. Despite of what one of the removed comments
explained, the load promotion would not mess with VPERM, it's only a
matter of doing the appropriate bitcasts when this instructions comes
to be introduced. Also make LOAD v8i32 legal.
2) Doing 1) exposed two bugs:
- v4i64 was being promoted to itself for several opcodes (introduced
in r124447 by David Greene) causing endless recursion and the stack to
explode.
- there was no support for allOnes BUILD_VECTORs and ANDNP would fail to
match because it was generating early target constant pools during
lowering.
3) The testcases are already checked-in, doing 1) exposed the
bugs in the current testcases.
4) Tidy up code to be more clear and explicit about AVX.
llvm-svn: 135313
was really intended, and it may have been required prior to some of the
recent refactors. Including it however causes LLVMX86Desc to need
symbols from LLVMX86CodeGen, forming a dependency cycle. This was masked
in almost all builds: Clang, and GCC w/ optimizations didn't actually
emit the symbols!
llvm-svn: 135242
backend. Moved some MCAsmInfo files down into the MCTargetDesc
sublibraries, removed some (i suspect long) dead files from other parts
of the CMake build, etc. Also copied the include directory hack from the
Makefile.
Finally, updated the lib deps. I spot checked this, and think its
correct, but review appreciated there.
llvm-svn: 135234
when determining validity of matching constraint. Allow i1
types access to the GR8 reg class for x86.
Fixes PR10352 and rdar://9777108
llvm-svn: 135180
During type legalization we often use the SIGN_EXTEND_INREG SDNode.
When this SDNode is legalized during the LegalizeVector phase, it is
scalarized because non-simple types are automatically marked to be expanded.
In this patch we add support for lowering SIGN_EXTEND_INREG manually.
This fixes CodeGen/X86/vec_sext.ll when running with the '-promote-elements'
flag.
llvm-svn: 135144
Update the debug output interface for MCParsedAsmOperand to have a print()
method which takes an output stream argument, an << operator which invokes
the print method using the given stream, and a dump() method which prints
the operand to the dbgs() stream. This makes the interface more consistent
with the rest of LLVM, and more convenient to use at the debugger command
line.
llvm-svn: 135043
and MCSubtargetInfo.
- Added methods to update subtarget features (used when targets automatically
detect subtarget features or switch modes).
- Teach X86Subtarget to update MCSubtargetInfo features bits since the
MCSubtargetInfo layer can be shared with other modules.
- These fixes .code 16 / .code 32 support since mode switch is updated in
MCSubtargetInfo so MC code emitter can do the right thing.
llvm-svn: 134884
CPU, and feature string. Parsing some asm directives can change
subtarget state (e.g. .code 16) and it must be reflected in other
modules (e.g. MCCodeEmitter). That is, the MCSubtargetInfo instance
must be shared.
llvm-svn: 134795
- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
llvm-svn: 134678
Add a MI->emitError() method that the backend can use to report errors
related to inline assembly. Call it from X86FloatingPoint.cpp when the
constraints are wrong.
This enables proper clang diagnostics from the backend:
$ clang -c pr30848.c
pr30848.c:5:12: error: Inline asm output regs must be last on the x87 stack
__asm__ ("" : "=u" (d)); /* { dg-error "output regs" } */
^
1 error generated.
llvm-svn: 134307
itineraries.
- Refactor TargetSubtarget to be based on MCSubtargetInfo.
- Change tablegen generated subtarget info to initialize MCSubtargetInfo
and hide more details from targets.
llvm-svn: 134257