One of the things that dynamic typing affects is the count of children a type has
Clear out the flag that makes us blindly believe the children count when a dynamic type change is detected
llvm-svn: 193663
This commit reimplements the TypeImpl class (the class that backs SBType) in terms of a static,dynamic type pair
This is useful for those cases when the dynamic type of an ObjC variable can only be obtained in terms of an "hollow" type with no ivars
In that case, we could either go with the static type (+iVar information) or with the dynamic type (+inheritance chain)
With the new TypeImpl implementation, we try to combine these two sources of information in order to extract as much information as possible
This should improve the functionality of tools that are using the SBType API to do extensive dynamic type inspection
llvm-svn: 193564
To make this work this patch extends LLDB to:
- Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list.
- Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines.
- Make DWARF expressions track which module they originated from.
- Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here.
- Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here:
1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target.
2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out.
3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized.
However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used.
Test case included.
llvm-svn: 192922
Some linkers (GNU ld) are picky about library order, so if we import libraries as part of our LDFLAGS then that needs to come after any DYLIB_NAME which might require that library.
llvm-svn: 192917
Extend DummySyntheticProvider to actually use debug-info vended children as the source of information
Make Python synthetic children either be valid, or fallback to the dummy, like their C++ counterparts
This allows LLDB to actually stop bailing out upon encountering an invalid synthetic children provider front-end, and still displaying the non synthetized ivar info
llvm-svn: 192741
Use 32-bit register enums without gaps on 64-bit hosts.
Don't show 64-bit registers when debugging 32-bit targets.
Add psuedo gpr registers (ax, ah, al, etc.)
Add mmx registers.
Fix TestRegisters.py to not read ymm15 register on 32-bit targets.
Fill out and move gcc/dwarf/gdb register enums to RegisterContext_x86.h
llvm-svn: 192263
This radar extends the notion of one-liner summaries to automagically apply in a few interesting cases
More specifically, this checkin changes the printout of ValueObjects to print on one-line (as if type summary add -c had been applied) iff:
this ValueObject does not have a summary
its children have no synthetic children
its children are not a non-empty base class without a summary
its children do not have a summary that asks for children to show up
the aggregate length of all the names of all the children is <= 50 characters
you did not ask to see the types during a printout
your pointer depth is 0
This is meant to simplify the way LLDB shows data on screen for small structs and similarly compact data types (e.g. std::pair<int,int> anyone?)
Feedback is especially welcome on how the feature feels and corner cases where we should apply this printout and don't (or viceversa, we are applying it when we shouldn't be)
llvm-svn: 191996
- test wasn't checking for a stop reason before issuing the 'script' command
- should resolve intermittent failure on the Linux GCC buildbot
llvm-svn: 191708
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
- Removes the block in UnwindLLDB::AddOneMoreFrame that tests for a bad stack setup,
since it is neither correct (tests the FP GPR), complete (doesn't consider multi-frame
cycles), nor reachable (the construction of RegisterContextLLDB will fail in the case
where either of the two (why just two?) previous frames have the same canonical frame
address as the frame that we propose adding to the stack).
llvm-svn: 191430
to build out the symbol table as addresses are used, and implements
the mechanism for ELF to add stripped symbols from eh_frame.
Uses this mechanism to allow disassembly for addresses corresponding
to stripped symbols for ELF, and provide hooks to implement this for
PE COFF.
Also removes eSymbolContextTailCall in favor of an option for
ResolveSymbolContextForAddress for consistency with the documentation
for eSymbolContextEverything. Essentially, this is just an option for
interpreting the so_addr.
llvm-svn: 191307
Specifically, allows the unwinder to handle the case where sc.function
gets resolved with a pc that is one past the address range of the function
(consistent with a tail call). However, there is no matching symbol.
Adds eSymbolContextTailCall to provide callers with control over the scope
of symbol resolution and to allow ResolveSymbolContextForAddress to handle
tail calls since this routine is common to unwind and disassembly.
llvm-svn: 191102
- tests are now anostic to the currently selected thread, as that is a frontend (i.e. driver) decision
- this is in preparation to a fix to POSIXThread::BreakNotify that will be committed shortly
Reviewed by: Matt Kopec
llvm-svn: 191041
- ProcessMonitor::[Do|Serve]Operation no longer depend on file descriptors!
- removed unused member functions CloseFD and EnableIPC
- add semaphores to signal when an Operation is ready to be processed/complete.
This commit fixes a bug that was identified under stress-testing (i.e. build
LLVM while running tests) that led to LLDB becoming unresponsive because the
read/write operations on file descriptors in ProcessMonitor were not checked.
Other test runner improvement/convenience:
- pickup environment variables LLDB_LINUX_LOG and LLDB_LINUX_LOG_OPTIONS to
enable (Linux) logging when running the test suite. Example usage:
$ LLDB_LINUX_LOG="mylog.txt" LLDB_LINUX_LOG_OPTIONS="process thread" python dotest.py
llvm-svn: 190820
I now see no unexpected failures on FreeBSD on a local run of the test
suite.
llvm.org/pr17214
llvm.org/pr17225
llvm.org/pr17231
llvm.org/pr17232
llvm.org/pr17233
llvm-svn: 190709
llvm.org/pr15261 missing size for static arrays
llvm.org/pr15278 expressions generating signals
llvm.org/pr15824 thread states aren't properly maintained
llvm.org/pr16696 threaded inferior debugging not yet on FreeBSD
llvm.org/pr17214 inline stepping fails on FreeBSD
llvm.org/pr17225 Clang assertion failure
llvm.org/pr17226 frame info lost after failed expression evaluation
llvm.org/pr17228 test timeout
The first three are existing Linux issues that also affect FreeBSD.
llvm-svn: 190698
This allows the PC to be directly changed to a different line.
It's similar to the example python script in examples/python/jump.py, except implemented as a builtin.
Also this version will track the current function correctly even if the target line resolves to multiple addresses. (e.g. debugging a templated function)
llvm-svn: 190572