Summary: This revision improves previous version (rL330322) which has been reverted due to crashes.
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Reviewers: craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: mike.dvoretsky, DavidKreitzer, sroland, llvm-commits
Differential Revision: https://reviews.llvm.org/D46179
llvm-svn: 339650
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D44785
llvm-svn: 330322
This completes the work started in r329604 and r329605 when we changed clang to no longer use the intrinsics.
We lost some InstCombine SimplifyDemandedBit optimizations through this change as we aren't able to fold 'and', bitcast, shuffle very well.
llvm-svn: 329990
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
I've moved the test cases from the InstCombine optimizations to the backend to keep the coverage we had there. It covered every possible immediate so I've preserved the resulting shuffle mask for each of those immediates.
llvm-svn: 313450
NFC.
Updated 3 Codegen regression tests to use the -mattr flag instead of the -mcpu flags as follows:
Instead of -mcpu=skx use -mattr=+avx512f,+avx512bw,+avx512vl,+avx512dq
Instead of -mcpu=knl use -mattr=+avx512f
Reviewers: delena
Revision: https://reviews.llvm.org/D37674
llvm-svn: 312909
These were taking priority over the aligned load instructions since there is no vmovda8/16. I don't think there is really a difference between aligned and unaligned on newer cpus so I don't think it matters which instructions we use.
But with this change we reduce the size of the isel table a little and we allow the aligned information to pass through to the evex->vec pass and produce the same output has avx/avx2 in some cases.
I also generally dislike patterns rooted in a bitcast which these were.
Differential Revision: https://reviews.llvm.org/D35977
llvm-svn: 309589
•static latency
•number of uOps from which the instructions consists
•all ports used by the instruction
Reviewers:
RKSimon
zvi
aymanmus
m_zuckerman
Differential Revision: https://reviews.llvm.org/D33897
llvm-svn: 306414
MOVNTDQA non-temporal aligned vector loads can be correctly represented using generic builtin loads, allowing us to remove the existing x86 intrinsics.
Clang companion patch: D31766.
Differential Revision: https://reviews.llvm.org/D31767
llvm-svn: 300325
VZEROUPPER should not be issued on Knights Landing (KNL), but on Skylake-avx512 it should be.
Differential Revision: https://reviews.llvm.org/D29874
llvm-svn: 296859
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
This patch removes the llvm intrinsics VPMOVSX and (V)PMOVZX sign/zero extension intrinsics and auto-upgrades to SEXT/ZEXT calls instead. We already did this for SSE41 PMOVSX sometime ago so much of that implementation can be reused.
Reapplied now that the the companion patch (D20684) removes/auto-upgrade the clang intrinsics has been committed.
Differential Revision: http://reviews.llvm.org/D20686
llvm-svn: 271131
This patch removes the llvm intrinsics VPMOVSX and (V)PMOVZX sign/zero extension intrinsics and auto-upgrades to SEXT/ZEXT calls instead. We already did this for SSE41 PMOVSX sometime ago so much of that implementation can be reused.
A companion patch (D20684) removes/auto-upgrade the clang intrinsics.
Differential Revision: http://reviews.llvm.org/D20686
llvm-svn: 270973
Since r245605, the clang headers don't use these anymore.
r245165 updated some of the tests already; update the others, add
an autoupgrade, remove the intrinsics, and cleanup the definitions.
Differential Revision: http://reviews.llvm.org/D10555
llvm-svn: 245606
This should complete the job started in r231794 and continued in r232045:
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
AVX2 introduced proper integer variants of the hacked integer insert/extract
C intrinsics that were created for this same functionality with AVX1.
This should complete the removal of insert/extract128 intrinsics.
The Clang precursor patch for this change was checked in at r232109.
llvm-svn: 232120
The permps and permd instructions have their operands swapped compared to the
intrinsic definition. Therefore, they do not fall into the INTR_TYPE_2OP
category.
I did not create a new category for those two, as they are the only one AFAICT
in that case.
<rdar://problem/20108262>
llvm-svn: 232085
The intrinsic is no longer generated by the front-end. Remove the intrinsic and
auto-upgrade it to a vector shuffle.
Reviewed by Nadav
This is related to rdar://problem/18742778.
llvm-svn: 231182
Patch to provide shuffle decodes and asm comments for the sse pslldq/psrldq SSE2/AVX2 byte shift instructions.
Differential Revision: http://reviews.llvm.org/D5598
llvm-svn: 219738
parsing (and latent bug in the instruction definitions).
This is effectively a revert of r136287 which tried to address
a specific and narrow case of immediate operands failing to be accepted
by x86 instructions with a pretty heavy hammer: it introduced a new kind
of operand that behaved differently. All of that is removed with this
commit, but the test cases are both preserved and enhanced.
The core problem that r136287 and this commit are trying to handle is
that gas accepts both of the following instructions:
insertps $192, %xmm0, %xmm1
insertps $-64, %xmm0, %xmm1
These will encode to the same byte sequence, with the immediate
occupying an 8-bit entry. The first form was fixed by r136287 but that
broke the prior handling of the second form! =[ Ironically, we would
still emit the second form in some cases and then be unable to
re-assemble the output.
The reason why the first instruction failed to be handled is because
prior to r136287 the operands ere marked 'i32i8imm' which forces them to
be sign-extenable. Clearly, that won't work for 192 in a single byte.
However, making thim zero-extended or "unsigned" doesn't really address
the core issue either because it breaks negative immediates. The correct
fix is to make these operands 'i8imm' reflecting that they can be either
signed or unsigned but must be 8-bit immediates. This patch backs out
r136287 and then changes those places as well as some others to use
'i8imm' rather than one of the extended variants.
Naturally, this broke something else. The custom DAG nodes had to be
updated to have a much more accurate type constraint of an i8 node, and
a bunch of Pat immediates needed to be specified as i8 values.
The fallout didn't end there though. We also then ceased to be able to
match the instruction-specific intrinsics to the instructions so
modified. Digging, this is because they too used i32 rather than i8 in
their signature. So I've also switched those intrinsics to i8 arguments
in line with the instructions.
In order to make the intrinsic adjustments of course, I also had to add
auto upgrading for the intrinsics.
I suspect that the intrinsic argument types may have led everything down
this rabbit hole. Pretty happy with the result.
llvm-svn: 217310
Adds the different broadcast instructions to the ReplaceableInstrsAVX2 table.
That way the ExeDepsFix pass can take better decisions when AVX2 broadcasts are
across domain (int <-> float).
In particular, prior to this patch we were generating:
vpbroadcastd LCPI1_0(%rip), %ymm2
vpand %ymm2, %ymm0, %ymm0
vmaxps %ymm1, %ymm0, %ymm0 ## <- domain change penalty
Now, we generate the following nice sequence where everything is in the float
domain:
vbroadcastss LCPI1_0(%rip), %ymm2
vandps %ymm2, %ymm0, %ymm0
vmaxps %ymm1, %ymm0, %ymm0
<rdar://problem/16354675>
llvm-svn: 204770