Commit Graph

3118 Commits

Author SHA1 Message Date
Valentin Clement 2bbbcae782 [mlir][openacc] Add missing attributes and operands for acc.loop
This patch add the missing operands to the acc.loop operation. Only the device_type
information is not part of the operation for now.

Reviewed By: rriddle, kiranchandramohan

Differential Revision: https://reviews.llvm.org/D86753
2020-08-31 19:50:05 -04:00
River Riddle 2481846a30 [mlir][PDL] Move the formats for PatternOp and RewriteOp to the declarative form.
This is possible now that the declarative assembly form supports regions.

Differential Revision: https://reviews.llvm.org/D86830
2020-08-31 13:26:24 -07:00
River Riddle eaeadce9bd [mlir][OpFormatGen] Add initial support for regions in the custom op assembly format
This adds some initial support for regions and does not support formatting the specific arguments of a region. For now this can be achieved by using a custom directive that formats the arguments and then parses the region.

Differential Revision: https://reviews.llvm.org/D86760
2020-08-31 13:26:24 -07:00
River Riddle 24b88920fe [mlir][ODS] Add new SymbolNameAttr and add support for in assemblyFormat
Symbol names are a special form of StringAttr that get treated specially in certain areas, such as formatting. This revision adds a special derived attr for them in ODS and adds support in the assemblyFormat for formatting them properly.

Differential Revision: https://reviews.llvm.org/D86759
2020-08-31 13:26:23 -07:00
River Riddle 88c6e25e4f [mlir][OpFormatGen] Add support for specifiy "custom" directives.
This revision adds support for custom directives to the declarative assembly format. This allows for users to use C++ for printing and parsing subsections of an otherwise declaratively specified format. The custom directive is structured as follows:

```
custom-directive ::= `custom` `<` UserDirective `>` `(` Params `)`
```

`user-directive` is used as a suffix when this directive is used during printing and parsing. When parsing, `parseUserDirective` will be invoked. When printing, `printUserDirective` will be invoked. The first parameter to these methods must be a reference to either the OpAsmParser, or OpAsmPrinter. The type of rest of the parameters is dependent on the `Params` specified in the assembly format.

Differential Revision: https://reviews.llvm.org/D84719
2020-08-31 13:26:23 -07:00
Kamlesh Kumar deb99610ab Improve doc comments for several methods returning bools
Differential Revision: https://reviews.llvm.org/D86848
2020-08-30 13:33:05 +05:30
Stella Laurenzo 2d1362e09a Add Location, Region and Block to MLIR Python bindings.
* This is just enough to create regions/blocks and iterate over them.
* Does not yet implement the preferred iteration strategy (python pseudo containers).
* Refinements need to come after doing basic mappings of operations and values so that the whole hierarchy can be used.

Differential Revision: https://reviews.llvm.org/D86683
2020-08-28 15:26:05 -07:00
Mehdi Amini c39c21610d Rename AnalysisManager::slice in AnalysisManager::nest (NFC)
The naming wasn't reflecting the intent of this API, "nest" is aligning
it with the pass manager API.
2020-08-28 20:41:07 +00:00
Mehdi Amini 7b00c80888 Add a global flag to disable the global dialect registry "process wise"
This is intended to ease the transition for client with a lot of
dependencies. It'll be removed in the coming weeks.

Differential Revision: https://reviews.llvm.org/D86755
2020-08-28 03:17:15 +00:00
Kiran Chandramohan 875074c8a9 [OpenMP][MLIR] Conversion pattern for OpenMP to LLVM
Adding a conversion pattern for the parallel Operation. This will
help the conversion of parallel operation with standard dialect to
parallel operation with llvm dialect. The type conversion of the block
arguments in a parallel region are controlled by the pattern for the
parallel Operation. Without this pattern, a parallel Operation with
block arguments cannot be converted from standard to LLVM dialect.
Other OpenMP operations without regions are marked as legal. When
translation of OpenMP operations with regions are added then patterns
for these operations can also be added.
Also uses all the standard to llvm patterns. Patterns of other dialects
can be added later if needed.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D86273
2020-08-27 19:32:15 +01:00
Alexandre E. Eichenberger a14a2805b0 [MLIR] MemRef Normalization for Dialects
When dealing with dialects that will results in function calls to
external libraries, it is important to be able to handle maps as some
dialects may require mapped data.  Before this patch, the detection of
whether normalization can apply or not, operations are compared to an
explicit list of operations (`alloc`, `dealloc`, `return`) or to the
presence of specific operation interfaces (`AffineReadOpInterface`,
`AffineWriteOpInterface`, `AffineDMAStartOp`, or `AffineDMAWaitOp`).

This patch add a trait, `MemRefsNormalizable` to determine if an
operation can have its `memrefs` normalized.

This trait can be used in turn by dialects to assert that such
operations are compatible with normalization of `memrefs` with
nontrivial memory layout specification. An example is given in the
literal tests.

Differential Revision: https://reviews.llvm.org/D86236
2020-08-27 20:26:59 +05:30
George Mitenkov e850558cdc [MLIR][SPIRVToLLVM] Added a hook for descriptor set / binding encoding
This patch introduces a hook to encode descriptor set
and binding number into `spv.globalVariable`'s symbolic name. This
allows to preserve this information, and at the same time legalize
the global variable for the conversion to LLVM dialect.

This is required for `mlir-spirv-cpu-runner` to convert kernel
arguments into LLVM.

Also, a couple of some nits added:
- removed unused comment
- changed to a capital letter in the comment

Reviewed By: mravishankar

Differential Revision: https://reviews.llvm.org/D86515
2020-08-27 08:27:42 +03:00
Mehdi Amini 6c05ca21b9 Remove the `run` method from `OpPassManager` and `Pass` and migrate it to `OpToOpPassAdaptor`
This makes OpPassManager more of a "container" of passes and not responsible to drive the execution.
As such we also make it constructible publicly, which will allow to build arbitrary pipeline decoupled from the execution. We'll make use of this facility to expose "dynamic pipeline" in the future.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D86391
2020-08-27 04:57:29 +00:00
George Mitenkov d7461b31e7 [MLIR][SPIRV] Added optional name to SPIR-V module
This patch adds an optional name to SPIR-V module.
This will help with lowering from GPU dialect (so that we
can pass the kernel module name) and will be more naturally
aligned with `GPUModuleOp`/`ModuleOp`.

Reviewed By: mravishankar

Differential Revision: https://reviews.llvm.org/D86386
2020-08-27 07:32:31 +03:00
Thomas Raoux 5fbfe2ec4f [mlir][vector] Add vector.bitcast operation
Based on the RFC discussed here:
https://llvm.discourse.group/t/rfc-vector-standard-add-bitcast-operation/1628/

Adding a vector.bitcast operation that allows casting to a vector of different
element type. The most minor dimension bitwidth must stay unchanged.

Differential Revision: https://reviews.llvm.org/D86580
2020-08-26 14:13:52 -07:00
River Riddle d289a97f91 [mlir][PDL] Add a PDL Interpreter Dialect
The PDL Interpreter dialect provides a lower level abstraction compared to the PDL dialect, and is targeted towards low level optimization and interpreter code generation. The dialect operations encapsulates low-level pattern match and rewrite "primitives", such as navigating the IR (Operation::getOperand), creating new operations (OpBuilder::create), etc. Many of the operations within this dialect also fuse branching control flow with some form of a predicate comparison operation. This type of fusion reduces the amount of work that an interpreter must do when executing.

An example of this representation is shown below:

```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
  %resultType = pdl.type
  %inputOperand = pdl.input
  %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
  pdl.rewrite %root {
    pdl.replace %root with (%inputOperand)
  }
}

// May be represented in the interpreter dialect as follows:
module {
  func @matcher(%arg0: !pdl.operation) {
    pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
  ^bb1:
    pdl_interp.return
  ^bb2:
    pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
  ^bb3:
    pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
  ^bb4:
    %0 = pdl_interp.get_operand 0 of %arg0
    pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
  ^bb5:
    %1 = pdl_interp.get_result 0 of %arg0
    pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
  ^bb6:
    pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
  }
  module @rewriters {
    func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
      pdl_interp.replace %arg1 with(%arg0)
      pdl_interp.return
    }
  }
}
```

Differential Revision: https://reviews.llvm.org/D84579
2020-08-26 05:22:27 -07:00
Mehdi Amini 0b7c184c2d Add assertion in PatternRewriter::create<> to defend the same way as OpBuilder::create<> against missing dialect registration (NFC)
The code would have failed a few line later, but that way the error
message is more clear/friendly to debug.
2020-08-26 06:57:23 +00:00
Mehdi Amini 5a6ff2bb3e Adjust assertion when casting to an unregistered operation
This assertion does not achieve what it meant to do originally, as it
would fire only when applied to an unregistered operation, which is a
fairly rare circumstance (it needs a dialect or context allowing
unregistered operation in the input in the first place).
Instead we relax it to only fire when it should have matched but didn't
because of the misconfiguration.

Differential Revision: https://reviews.llvm.org/D86588
2020-08-26 06:57:22 +00:00
aartbik 66e536bc36 [mlir] [LLVMIR] Mark reductions as side-effect free
Attribute was missing from original base class.

Reviewed By: bkramer

Differential Revision: https://reviews.llvm.org/D86569
2020-08-25 13:09:19 -07:00
aartbik 84fdc33f47 [mlir] [LLVMIR] Add get active lane mask intrinsic
Provides fast, generic way of setting a mask up to a certain
point. Potential use cases that may benefit are create_mask
and transfer_read/write operations in the vector dialect.

Reviewed By: bkramer

Differential Revision: https://reviews.llvm.org/D86501
2020-08-25 12:19:17 -07:00
clementval 4d69bcb12f [mlir][openacc][NFC] Fix comment about OpenACCExecMapping 2020-08-25 15:11:05 -04:00
Mehdi Amini 610706906a Add an assertion to protect against missing Dialect registration in a pass pipeline (NFC)
Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D86327
2020-08-24 06:49:29 +00:00
Stella Laurenzo 3137c29926 Add initial python bindings for attributes.
* Generic mlir.ir.Attribute class.
* First standard attribute (mlir.ir.StringAttr), following the same pattern as generic vs standard types.
* NamedAttribute class.

Differential Revision: https://reviews.llvm.org/D86250
2020-08-23 22:16:23 -07:00
Mehdi Amini 50927f3191 Reword the documentation for the `mlirTranslateMain` API (NFC)
Address post-commit review in https://reviews.llvm.org/D86408
2020-08-23 04:35:58 +00:00
Mehdi Amini f164534ca8 Add a `dialect_registration` callback for "translations" registered with mlir-translate
This will allow out-of-tree translation to register the dialects they expect
to see in their input, on the model of getDependentDialects() for passes.

Differential Revision: https://reviews.llvm.org/D86409
2020-08-23 01:00:39 +00:00
Mehdi Amini 96cb8cdeb0 Refactor `mlir-translate` to extract the `main()` logic in a helper on the model of `MlirOptMain()` (NFC)
Differential Revision: https://reviews.llvm.org/D86408
2020-08-23 01:00:31 +00:00
Mauricio Sifontes 21f8d41468 Refactor Reduction Tree Pass
Refactor the way the reduction tree pass works in the MLIR Reduce tool by introducing a set of utilities that facilitate the implementation of new Reducer classes to be used in the passes.

This will allow for the fast implementation of general transformations to operate on all mlir modules as well as custom transformations for different dialects.

These utilities allow for the implementation of Reducer classes by simply defining a method that indexes the operations/blocks/regions to be transformed and a method to perform the deletion or transfomration based on the indexes.

Create the transformSpace class member in the ReductionNode class to keep track of the indexes that have already been transformed or deleted at a current level.

Delete the FunctionReducer class and replace it with the OpReducer class to reflect this new API while performing the same transformation and allowing the instantiation of a reduction pass for different types of operations at the module's highest hierarchichal level.

Modify the SinglePath Traversal method to reflect the use of the new API.

Reviewed: jpienaar

Differential Revision: https://reviews.llvm.org/D85591
2020-08-21 04:59:24 +00:00
Frank Laub cca3f3dd26 [MLIR] Add affine.parallel folder and normalizer
Add a folder to the affine.parallel op so that loop bounds expressions are canonicalized.

Additionally, a new AffineParallelNormalizePass is added to adjust affine.parallel ops so that the lower bound is always 0 and the upper bound always represents a range with a step size of 1.

Differential Revision: https://reviews.llvm.org/D84998
2020-08-20 22:23:21 +00:00
Arjun P 33f574672f [MLIR] Redundancy detection for FlatAffineConstraints using Simplex
This patch adds the capability to perform constraint redundancy checks for `FlatAffineConstraints` using `Simplex`, via a new member function `FlatAffineConstraints::removeRedundantConstraints`. The pre-existing redundancy detection algorithm runs a full rational emptiness check for each inequality separately for checking redundancy. Leveraging the existing `Simplex` infrastructure, in this patch we have an algorithm for redundancy checks that can check each constraint by performing pivots on the tableau, which provides an alternative to running Fourier-Motzkin elimination for each constraint separately.

Differential Revision: https://reviews.llvm.org/D84935
2020-08-20 13:38:51 +05:30
Rahul Joshi 9c7b0c4aa5 [MLIR] Add PatternRewriter::mergeBlockBefore() to merge a block in the middle of another block.
- This utility to merge a block anywhere into another one can help inline single
  block regions into other blocks.
- Modified patterns test to use the new function.

Differential Revision: https://reviews.llvm.org/D86251
2020-08-19 16:24:59 -07:00
Mars Saxman d34df52377 Implement FPToUI and UIToFP ops in standard dialect
Add the unsigned complements to the existing FPToSI and SIToFP operations in the
standard dialect, with one-to-one lowerings to the corresponding LLVM operations.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D85557
2020-08-19 22:49:09 +02:00
River Riddle 3fb3927bd3 [mlir] Add a new "Pattern Descriptor Language" (PDL) dialect.
PDL presents a high level abstraction for the rewrite pattern infrastructure available in MLIR. This abstraction allows for representing patterns transforming MLIR, as MLIR. This allows for applying all of the benefits that the general MLIR infrastructure provides, to the infrastructure itself. This means that pattern matching can be more easily verified for correctness, targeted by frontends, and optimized.

PDL abstracts over various different aspects of patterns and core MLIR data structures. Patterns are specified via a `pdl.pattern` operation. These operations contain a region body for the "matcher" code, and terminate with a `pdl.rewrite` that either dispatches to an external rewriter or contains a region for the rewrite specified via `pdl`. The types of values in `pdl` are handle types to MLIR C++ types, with `!pdl.attribute`, `!pdl.operation`, and `!pdl.type` directly mapping to `mlir::Attribute`, `mlir::Operation*`, and `mlir::Value` respectively.

An example pattern is shown below:

```mlir
// pdl.pattern contains metadata similarly to a `RewritePattern`.
pdl.pattern : benefit(1) {
  // External input operand values are specified via `pdl.input` operations.
  // Result types are constrainted via `pdl.type` operations.

  %resultType = pdl.type
  %inputOperand = pdl.input
  %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
  pdl.rewrite(%root) {
    pdl.replace %root with (%inputOperand)
  }
}
```

This is a culmination of the work originally discussed here: https://groups.google.com/a/tensorflow.org/g/mlir/c/j_bn74ByxlQ

Differential Revision: https://reviews.llvm.org/D84578
2020-08-19 13:13:06 -07:00
Alex Zinenko da56297462 [mlir] expose standard attributes to C API
Provide C API for MLIR standard attributes. Since standard attributes live
under lib/IR in core MLIR, place the C APIs in the IR library as well (standard
ops will go in a separate library).

Affine map and integer set attributes are only exposed as placeholder types
with IsA support due to the lack of C APIs for the corresponding types.

Integer and floating point attribute APIs expecting APInt and APFloat are not
exposed pending decision on how to support APInt and APFloat.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D86143
2020-08-19 18:50:19 +02:00
Stella Laurenzo d29d1e2ffd Add python bindings for Type and IntegerType.
* The binding for Type is trivial and should be non-controversial.
* The way that I define the IntegerType should serve as a pattern for what I want to do next.
* I propose defining the rest of the standard types in this fashion and then generalizing for dialect types as necessary.
* Essentially, creating/accessing a concrete Type (vs interacting with the string form) is done by "casting" to the concrete type (i.e. IntegerType can be constructed with a Type and will throw if the cast is illegal).
* This deviates from some of our previous discussions about global objects but I think produces a usable API and we should go this way.

Differential Revision: https://reviews.llvm.org/D86179
2020-08-19 09:23:44 -07:00
Mehdi Amini f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
Mehdi Amini e75bc5c791 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit d14cf45735.
The build is broken with GCC-5.
2020-08-19 01:19:03 +00:00
Mehdi Amini d14cf45735 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-18 23:23:56 +00:00
River Riddle 250f43d3ec [mlir] Remove the use of "kinds" from Attributes and Types
This greatly simplifies a large portion of the underlying infrastructure, allows for lookups of singleton classes to be much more efficient and always thread-safe(no locking). As a result of this, the dialect symbol registry has been removed as it is no longer necessary.

For users broken by this change, an alert was sent out(https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types) that helps prevent a majority of the breakage surface area. All that should be necessary, if the advice in that alert was followed, is removing the kind passed to the ::get methods.

Differential Revision: https://reviews.llvm.org/D86121
2020-08-18 16:20:14 -07:00
Mehdi Amini d84fe55e0d Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit e1de2b7550.
Broke a build bot.
2020-08-18 22:16:34 +00:00
Mehdi Amini e1de2b7550 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  mlir::registerDialect<mlir::standalone::StandaloneDialect>();
  mlir::registerDialect<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
2020-08-18 21:14:39 +00:00
MaheshRavishankar 5ccac05d43 [mlir][Linalg] Modify callback for getting id/nprocs in
LinalgDistribution options to allow more general distributions.

Changing the signature of the callback to send in the ranges for all
the parallel loops and expect a vector with the Value to use for the
processor-id and number-of-processors for each of the parallel loops.

Differential Revision: https://reviews.llvm.org/D86095
2020-08-18 14:04:40 -07:00
Rob Suderman 5556575230 Added std.floor operation to match std.ceil
There should be an equivalent std.floor op to std.ceil. This includes
matching lowerings for SPIRV, NVVM, ROCDL, and LLVM.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D85940
2020-08-18 10:25:32 -07:00
Mauricio Sifontes 8f4859d351 Create Optimization Pass Wrapper for MLIR Reduce
Create a reduction pass that accepts an optimization pass as argument
and only replaces the golden module in the pipeline if the output of the
optimization pass is smaller than the input and still exhibits the
interesting behavior.

Add a -test-pass option to test individual passes in the MLIR Reduce
tool.

Reviewed By: jpienaar

Differential Revision: https://reviews.llvm.org/D84783
2020-08-18 16:47:10 +00:00
Alex Zinenko 74f577845e [mlir] expose standard types to C API
Provide C API for MLIR standard types. Since standard types live under lib/IR
in core MLIR, place the C APIs in the IR library as well (standard ops will go
into a separate library). This also defines a placeholder for affine maps that
are necessary to construct a memref, but are not yet exposed to the C API.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D86094
2020-08-18 13:11:37 +02:00
Mehdi Amini d0e2c79b61 Fix method name to start with lower case to match style guide (NFC) 2020-08-18 00:19:22 +00:00
Alex Zinenko 47d185784d [mlir] Provide LLVMType::getPrimitiveSizeInBits
This function is available on llvm::Type and has been used by some clients of
the LLVM dialect before the transition. Implement the MLIR counterpart.

Reviewed By: schweitz

Differential Revision: https://reviews.llvm.org/D85847
2020-08-17 18:01:42 +02:00
Rahul Joshi 9a4b30cf84 [MLIR] Add support for defining and using Op specific analysis
- Add variants of getAnalysis() and friends that operate on a specific derived
  operation types.
- Add OpPassManager::getAnalysis() to always call the base getAnalysis() with OpT.
- With this, an OperationPass can call getAnalysis<> using an analysis type that
  is generic (works on Operation *) or specific to the OpT for the pass. Anything
  else will fail to compile.
- Extend AnalysisManager unit test to test this, and add a new PassManager unit
  test to test this functionality in the context of an OperationPass.

Differential Revision: https://reviews.llvm.org/D84897
2020-08-17 09:00:47 -07:00
Alex Zinenko 168213f91c [mlir] Move data layout from LLVMDialect to module Op attributes
Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.

This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.

This removes the need for LLVMDialectImpl, which is also removed.

Depends On D85650

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D85652
2020-08-17 15:12:36 +02:00
Mehdi Amini 54ce344314 Refactor mlir-opt setup in a new helper function (NFC)
This will help refactoring some of the tools to prepare for the explicit registration of
Dialects.

Differential Revision: https://reviews.llvm.org/D86023
2020-08-15 20:09:06 +00:00
Mehdi Amini 25ee851746 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit 2056393387.

Build is broken on a few bots
2020-08-15 09:21:47 +00:00