such guides below explicit ones, and ensure that references to the class's
template parameters are not treated as forwarding references.
We make a few tweaks to the wording in the current standard:
1) The constructor parameter list is copied faithfully to the deduction guide,
without losing default arguments or a varargs ellipsis (which the standard
wording loses by omission).
2) If the class template declares no constructors, we add a T() -> T<...> guide
(which will only ever work if T has default arguments for all non-pack
template parameters).
3) If the class template declares nothing that looks like a copy or move
constructor, we add a T(T<...>) -> T<...> guide.
#2 and #3 follow from the "pretend we had a class type with these constructors"
philosophy for deduction guides.
llvm-svn: 295007
Summary:
Warn when a lambda explicitly captures something that is not used in its body.
The warning is part of -Wunused and can be enabled with -Wunused-lambda-capture.
Reviewers: rsmith, arphaman, jbcoe, aaron.ballman
Subscribers: Quuxplusone, arphaman, cfe-commits
Differential Revision: https://reviews.llvm.org/D28467
llvm-svn: 291905
This implements something like the current direction of DR1581: we use a narrow
syntactic check to determine the set of places where a constant expression
could be evaluated, and only instantiate a constexpr function or variable if
it's referenced in one of those contexts, or is odr-used.
It's not yet clear whether this is the right set of syntactic locations; we
currently consider all contexts within templates that would result in odr-uses
after instantiation, and contexts within list-initialization (narrowing
conversions take another victim...), as requiring instantiation. We could in
principle restrict the former cases more (only const integral / reference
variable initializers, and contexts in which a constant expression is required,
perhaps). However, this is sufficient to allow us to accept libstdc++ code,
which relies on GCC's behavior (which appears to be somewhat similar to this
approach).
llvm-svn: 291318
We continue to support dynamic exception specifications in C++1z as an
extension, but produce an error-by-default warning when we encounter one. This
allows users to opt back into the feature with a warning flag, and implicitly
opts system headers back into the feature should they happen to use it.
There is one semantic change implied by P0003R5 but not implemented here:
violating a throw() exception specification should now call std::terminate
directly instead of calling std::unexpected(), but since P0003R5 also removes
std::unexpected() and std::set_unexpected, and the default unexpected handler
calls std::terminate(), a conforming C++1z program cannot tell that we are
still calling it. The upside of this strategy is perfect backwards
compatibility; the downside is that we don't get the more efficient 'noexcept'
codegen for 'throw()'.
llvm-svn: 289019
Summary:
[expr.cast.static] states:
> 3. A glvalue of type “cv1 T1” can be cast to type “rvalue reference to cv2 T2” if “cv2 T2” is reference-compatible
> with “cv1 T1”. The result refers to the object or the specified base class subobject thereof. If T2 is
> an inaccessible or ambiguous base class of T1, a program that necessitates such a cast is
> ill-formed.
>
> 4. Otherwise, an expression e can be explicitly converted to a type T using a static_cast of the form static_-
> cast<T>(e) if the declaration T t(e); is well-formed, for some invented temporary variable t. [...]
Currently when checking p3 Clang will diagnose `static_cast<T&&>(e)` as invalid if the argument is not reference compatible with `T`. However I believe the correct behavior is to also check p4 in those cases. For example:
```
double y = 42;
static_cast<int&&>(y); // this should be OK. 'int&& t(y)' is well formed
```
Note that we still don't check p4 for non-reference-compatible types which are reference-related since `T&& t(e);` should never be well formed in those cases.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D26231
llvm-svn: 285872
mismatched dynamic exception specifications in expressions from an error to a
warning, since this is no longer ill-formed in C++1z.
Allow reference binding of a reference-to-non-noexcept function to a noexcept
function lvalue. As defect resolutions, also allow a conditional between
noexcept and non-noexcept function lvalues to produce a non-noexcept function
lvalue (rather than decaying to a function pointer), and allow function
template argument deduction to deduce a reference to non-noexcept function when
binding to a noexcept function type.
llvm-svn: 284905
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
This is a re-commit of r284800.
llvm-svn: 284890
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
llvm-svn: 284800
Original commit message:
[c++1z] Teach composite pointer type computation how to compute the composite
pointer type of two function pointers with different noexcept specifications.
While I'm here, also teach it how to merge dynamic exception specifications.
llvm-svn: 284785
pointer type of two function pointers with different noexcept specifications.
While I'm here, also teach it how to merge dynamic exception specifications.
llvm-svn: 284753
Implement lambda capture of *this by copy.
For e.g.:
struct A {
int d = 10;
auto foo() { return [*this] (auto a) mutable { d+=a; return d; }; }
};
auto L = A{}.foo(); // A{}'s lifetime is gone.
// Below is still ok, because *this was captured by value.
assert(L(10) == 20);
assert(L(100) == 120);
If the capture was implicit, or [this] (i.e. *this was captured by reference), this code would be otherwise undefined.
Implementation Strategy:
- amend the parser to accept *this in the lambda introducer
- add a new king of capture LCK_StarThis
- teach Sema::CheckCXXThisCapture to handle by copy captures of the
enclosing object (i.e. *this)
- when CheckCXXThisCapture does capture by copy, the corresponding
initializer expression for the closure's data member
direct-initializes it thus making a copy of '*this'.
- in codegen, when assigning to CXXThisValue, if *this was captured by
copy, make sure it points to the corresponding field member, and
not, unlike when captured by reference, what the field member points
to.
- mark feature as implemented in svn
Much gratitude to Richard Smith for his carefully illuminating reviews!
llvm-svn: 263921
Switch the evaluation from isIntegerConstantExpr to EvaluateAsInt.
EvaluateAsInt will evaluate more types of expressions than
isIntegerConstantExpr.
Move one case from -Wsign-conversion to -Wconstant-conversion. The case is:
1) Source and target types are signed
2) Source type is wider than the target type
3) The source constant value is positive
4) The conversion will store the value as negative in the target.
llvm-svn: 259271
side-effect, so that we don't allow speculative evaluation of such expressions
during code generation.
This caused a diagnostic quality regression, so fix constant expression
diagnostics to prefer either the first "can't be constant folded" diagnostic or
the first "not a constant expression" diagnostic depending on the kind of
evaluation we're doing. This was always the intent, but didn't quite work
correctly before.
This results in certain initializers that used to be constant initializers to
no longer be; in particular, things like:
float f = 1e100;
are no longer accepted in C. This seems appropriate, as such constructs would
lead to code being executed if sanitizers are enabled.
llvm-svn: 254574
std::initializer_list<T> type. Instead, the list must contain a single element
and the type is deduced from that.
In Clang 3.7, we warned by default on all the cases that would change meaning
due to this change. In Clang 3.8, we will support only the new rules -- per
the request in N3922, this change is applied as a Defect Report against earlier
versions of the C++ standard.
This change is not entirely trivial, because for lambda init-captures we
previously did not track the difference between direct-list-initialization and
copy-list-initialization. The difference was not previously observable, because
the two forms of initialization always did the same thing (the elements of the
initializer list were always copy-initialized regardless of the initialization
style used for the init-capture).
llvm-svn: 252688
These test updates almost exclusively around the change in behavior
around enum: enums without a definition are considered incomplete except
when targeting MSVC ABIs. Since these tests are interested in the
'incomplete-enum' behavior, restrict them to %itanium_abi_triple.
llvm-svn: 249660
If a function declaration is found inside a template function as in:
template<class T> void f() {
void g(int x = T::v) except(T::w);
}
it must be instantiated along with the enclosing template function,
including default arguments and exception specification.
Together with the patch committed in r240974 this implements DR1484.
Differential Revision: http://reviews.llvm.org/D11194
llvm-svn: 245810
This patch adds ObjectFilePCHContainerOperations uses the LLVM backend
to put the contents of a PCH into a __clangast section inside a COFF, ELF,
or Mach-O object file container.
This is done to facilitate module debugging by makeing it possible to
store the debug info for the types defined by a module alongside the AST.
rdar://problem/20091852
llvm-svn: 241620
The error has the form ... 'int' ... 'const int' ... dropped qualifiers. At
first glance, it appears that the const qualifier is added. Reverse the types
so that the second type is less qualified than the first.
llvm-svn: 237482
Previously we'd try to perform checks on the captures from the middle of
parsing the lambda's body, at the point where we detected that a variable
needed to be captured. This was wrong in a number of subtle ways. In
PR23334, we couldn't correctly handle the list of potential odr-uses
resulting from the capture, and our attempt to recover from that resulted
in a use-after-free.
We now defer building the initialization expression until we leave the lambda
body and return to the enclosing context, where the initialization does the
right thing. This patch only covers lambda-expressions, but we should apply
the same change to blocks and captured statements too.
llvm-svn: 235921
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
This reapplies r230044 with a fixed configure+make build and updated
dependencies and testcase requirements. Over the last iteration this
version adds
- missing target requirements for testcases that specify an x86 triple,
- a missing clangCodeGen.a dependency to libClang.a in the make build.
rdar://problem/19104245
llvm-svn: 230423
(or of a lambda init-capture, which is sort-of such a variable). The semantics
of such constructs will change when we implement N3922, so we intend to warn on
this in Clang 3.6 then change the semantics in Clang 3.7.
llvm-svn: 228792
Previously if an enumeration was used in a nested name specifier in pre-C++11
language dialect, error message was 'XXX is not a class, namespace, or scoped
enumeration'. This patch removes the word 'scoped' as in C++11 any enumeration
may be used in this context.
llvm-svn: 226410
We don't yet support pointer-to-member template arguments that have undergone
pointer-to-member conversions, mostly because we don't have a mangling for them yet.
llvm-svn: 222807
Specifically, when we have this situation:
struct A {
template <typename T> struct B {
int m1 = sizeof(A);
};
B<int> m2;
};
We can't parse m1's initializer eagerly because we need A to be
complete. Therefore we wait until the end of A's class scope to parse
it. However, we can trigger instantiation of B before the end of A,
which will attempt to instantiate the field decls eagerly, and it would
build a bad field decl instantiation that said it had an initializer but
actually lacked one.
Fixed by deferring instantiation of default member initializers until
they are needed during constructor analysis. This addresses a long
standing FIXME in the code.
Fixes PR19195.
Reviewed By: rsmith
Differential Revision: http://reviews.llvm.org/D5690
llvm-svn: 222192