Summary:
Currently the NVVMReflect pass is run at the beginning of our backend
passes. But really, it should be run as early as possible, as it's
simply resolving an "if" statement in code. So copy it into
TargetMachine::addEarlyAsPossiblePasses.
We still run it at the beginning of the backend passes, since it's
needed for correctness when lowering to nvptx.
(Specifically, NVVMReflect changes each call to the __nvvm_reflect
function or llvm.nvvm.reflect intrinsic into an integer constant, based
on the pass's configuration. Clearly we miss many optimization
opportunities if we perform this transformation at the beginning of
codegen.)
Reviewers: rnk
Subscribers: tra, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18616
llvm-svn: 267765
NVPTXLowerKernelArgs is required for correctness, so it should not be guarded
by CodeGenOpt::None.
NVPTXPeephole is optimization only, so it should be skipped when
CodeGenOpt::None.
llvm-svn: 267619
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
Summary:
Calls on NVPTX are unusually expensive (for one thing, lots of state
needs to be saved to memory, which is slow), so make the inlininer much
more aggressive.
Reviewers: chandlerc
Subscribers: jholewinski, llvm-commits, tra
Differential Revision: http://reviews.llvm.org/D18561
llvm-svn: 266406
Add a common parent class for ConstantArray, ConstantVector, and
ConstantStruct called ConstantAggregate. These are the aggregate
subclasses of Constant that take operands.
This is mainly a cleanup, adding common `isa` target and removing
duplicated code. However, it also simplifies caching which constants
point transitively at `GlobalValue` (a possible future direction).
llvm-svn: 265466
Summary:
Previously, we were running afoul of the assertion
EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && "LowerCall emitted a value with the wrong type!"
in SelectionDAGBuilder.cpp when running the NVPTX/i8-param.ll test.
This is because our backend (for some reason) treats small return values
as i32, but it wasn't ever truncating the i32 back down to the expected
width in the DAG.
Unclear to me whether this fixes any actual bugs -- in this test, at
least, the generated code is unchanged.
Reviewers: jingyue
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: http://reviews.llvm.org/D17872
llvm-svn: 265091
Summary:
Previously the NVVMReflect pass would read its configuration from
command-line flags or a static configuration given to the pass at
instantiation time.
This doesn't quite work for clang's use-case. It needs to pass a value
for __CUDA_FTZ down on a per-module basis. We use a module flag for
this, so the NVVMReflect pass needs to be updated to read said flag.
Reviewers: tra, rnk
Subscribers: cfe-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18672
llvm-svn: 265090
Summary:
Tablegen tries to infer this from the selection DAG patterns defined for
the instructions, but it can't always.
An instructive example is CLZr64. CLZr32 is correctly inferred to have
no side-effects, but the selection DAG pattern for CLZr64 is slightly
more complicated, and in particular the ctlz DAG node is not at the root
of the pattern. Thus tablegen can't infer that CLZr64 has no
side-effects.
Reviewers: jholewinski
Subscribers: jholewinski, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17472
llvm-svn: 265089
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
Summary:
Currently it's a module pass. Make it a function pass so that we can
move it to PassManagerBuilder's EP_EarlyAsPossible extension point,
which only accepts function passes.
Reviewers: rnk
Subscribers: tra, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18615
llvm-svn: 264919
MachineFunctionProperties represents a set of properties that a MachineFunction
can have at particular points in time. Existing examples of this idea are
MachineRegisterInfo::isSSA() and MachineRegisterInfo::tracksLiveness() which
will eventually be switched to use this mechanism.
This change introduces the AllVRegsAllocated property; i.e. the property that
all virtual registers have been allocated and there are no VReg operands
left.
With this mechanism, passes can declare that they require a particular property
to be set, or that they set or clear properties by implementing e.g.
MachineFunctionPass::getRequiredProperties(). The MachineFunctionPass base class
verifies that the requirements are met, and handles the setting and clearing
based on the delcarations. Passes can also directly query and update the current
properties of the MF if they want to have conditional behavior.
This change annotates the target-independent post-regalloc passes; future
changes will also annotate target-specific ones.
Reviewers: qcolombet, hfinkel
Differential Revision: http://reviews.llvm.org/D18421
llvm-svn: 264593
This reserves an MDKind for !llvm.loop, which allows callers to avoid a
string-based lookup. I'm not sure why it was missing.
There should be no functionality change here, just a small compile-time
speedup.
llvm-svn: 264371
Summary:
The old address space inference pass (NVPTXFavorNonGenericAddrSpaces) is unable
to convert the address space of a pointer induction variable. This patch adds a
new pass called NVPTXInferAddressSpaces that overcomes that limitation using a
fixed-point data-flow analysis (see the file header comments for details).
The new pass is experimental and not enabled by default. Users can turn
it on by setting the -nvptx-use-infer-addrspace flag of llc.
Reviewers: jholewinski, tra, jlebar
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D17965
llvm-svn: 263916
tests to run GVN in both modes.
This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.
Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.
I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.
Differential Revision: http://reviews.llvm.org/D18019
llvm-svn: 263208
Summary:
Tablegen was unable to determine that param loads/stores were actually
reading or writing from memory. I think this isn't a problem in
practice for param stores, because those occur in a block right before
we make our call. But param loads don't have to at the very beginning
of a function, so should be annotated as mayLoad so we don't incorrectly
optimize them.
Reviewers: jholewinski
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D17471
llvm-svn: 262381
Summary: Looks like this was caused by a typo.
Reviewers: jholewinski
Subscribers: jholewinski, llvm-commits, tra
Differential Revision: http://reviews.llvm.org/D17357
llvm-svn: 262380
Summary:
Calls sometimes need to be convergent. This is already handled at the
LLVM IR level, but it also needs to be handled at the MI level.
Ideally we'd propagate convergence from instructions, down through the
selection DAG, and into MIs. But this is Hard, and would affect
optimizations in the SDNs -- right now only SDNs with two operands have
any flags at all.
Instead, here's a much simpler hack: Add new opcodes for NVPTX for
convergent calls, and generate these when lowering convergent LLVM
calls.
Reviewers: jholewinski
Subscribers: jholewinski, chandlerc, joker.eph, jhen, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17423
llvm-svn: 262373
Summary:
Also simplify some of the embedded C++ logic.
No functional changes.
Reviewers: jholewinski
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: http://reviews.llvm.org/D17354
llvm-svn: 262371
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
Summary:
Previously the machine instructions for bar.sync &co. were not marked as
convergent. This resulted in some MI passes (such as TailDuplication,
fixed in an upcoming patch) doing unsafe things to these instructions.
Reviewers: jingyue
Subscribers: llvm-commits, tra, jholewinski, hfinkel
Differential Revision: http://reviews.llvm.org/D17318
llvm-svn: 261115
Summary:
Otherwise we'll try to do unsafe optimizations on these MIs, such as
sinking loads below calls.
(I suspect that this is not the only bug in the NVPTX instruction
tablegen files; I need to comb through them.)
Reviewers: jholewinski, tra
Subscribers: jingyue, jhen, llvm-commits
Differential Revision: http://reviews.llvm.org/D17315
llvm-svn: 261113
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Summary:
Previously, we would just output "foo = bar" in the assembly, and then
ptxas would choke. Now we die before emitting any invalid code.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, jhen, tra
Differential Revision: http://reviews.llvm.org/D16490
llvm-svn: 258638
These are redundant pairs of nodes defined for
INSERT_VECTOR_ELEMENT/EXTRACT_VECTOR_ELEMENT.
insertelement/extractelement are slightly closer to the corresponding
C++ node name, and has stricter type checking so prefer it.
Update targets to only use these nodes where it is trivial to do so.
AArch64, ARM, and Mips all have various type errors on simple replacement,
so they will need work to fix.
Example from AArch64:
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
Which is trying to do sext_inreg i8, i8.
llvm-svn: 255359
If a section is rw, it is irrelevant if the dynamic linker will write to
it or not.
It looks like llvm implemented this because gcc was doing it. It looks
like gcc implemented this in the hope that it would put all the
relocated items close together and speed up the dynamic linker.
There are two problem with this:
* It doesn't work. Both bfd and gold will map .data.rel to .data and
concatenate the input sections in the order they are seen.
* If we want a feature like that, it can be implemented directly in the
linker since it knowns where the dynamic relocations are.
llvm-svn: 253436