Introduce a new PrettyStackTraceDecl.
Use it to add the top level LLVM IR generation stuff in
Backend.cpp to stack traces. We now get crashes like:
Stack dump:
0. Program arguments: clang t.c -emit-llvm
1. <eof> parser at end of file
2. t.c:1:5: LLVM IR generation of declaration 'a'
Abort
for IR generation crashes.
llvm-svn: 66153
parser. For example, we now print out:
0. t.c:5:10: in compound statement {}
1. t.c:3:12: in compound statement {}
2. clang t.c -fsyntax-only
llvm-svn: 66108
std::vector<int>::allocator_type
When we parse a template-id that names a type, it will become either a
template-id annotation (which is a parsed representation of a
template-id that has not yet been through semantic analysis) or a
typename annotation (where semantic analysis has resolved the
template-id to an actual type), depending on the context. We only
produce a type in contexts where we know that we only need type
information, e.g., in a type specifier. Otherwise, we create a
template-id annotation that can later be "upgraded" by transforming it
into a typename annotation when the parser needs a type. This occurs,
for example, when we've parsed "std::vector<int>" above and then see
the '::' after it. However, it means that when writing something like
this:
template<> class Outer::Inner<int> { ... };
We have two tokens to represent Outer::Inner<int>: one token for the
nested name specifier Outer::, and one template-id annotation token
for Inner<int>, which will be passed to semantic analysis to define
the class template specialization.
Most of the churn in the template tests in this patch come from an
improvement in our error recovery from ill-formed template-ids.
llvm-svn: 65467
us whether there was an error in trying to parse a type-name (type-id
in C++). This allows propagation of errors further in the compiler,
suppressing more bogus error messages.
llvm-svn: 64922
any named parameters, e.g., this is accepted in C:
void f(...) __attribute__((overloadable));
although this would be rejected:
void f(...);
To do this, moved the checking of the "ellipsis without any named
arguments" condition from the parser into Sema (where it belongs anyway).
llvm-svn: 64902
specialization of class templates, e.g.,
template<typename T> class X;
template<> class X<int> { /* blah */ };
Each specialization is a different *Decl node (naturally), and can
have different members. We keep track of forward declarations and
definitions as for other class/struct/union types.
This is only the basic framework: we still have to deal with checking
the template headers properly, improving recovery when there are
failures, handling nested name specifiers, etc.
llvm-svn: 64848
to a class template. For example, the template-id 'vector<int>' now
has a nice, sugary type in the type system. What we can do now:
- Parse template-ids like 'vector<int>' (where 'vector' names a
class template) and form proper types for them in the type system.
- Parse icky template-ids like 'A<5>' and 'A<(5 > 0)>' properly,
using (sadly) a bool in the parser to tell it whether '>' should
be treated as an operator or not.
This is a baby-step, with major problems and limitations:
- There are currently two ways that we handle template arguments
(whether they are types or expressions). These will be merged, and,
most likely, TemplateArg will disappear.
- We don't have any notion of the declaration of class template
specializations or of template instantiations, so all template-ids
are fancy names for 'int' :)
llvm-svn: 64153
than a Decl, which gives us some more flexibility to express the
results with the type system. There are no clients using this
flexibility yet, but it's meant to be able to describe qualified names
as written in the source (e.g., "foo::type") or template-ids that name
a class template specialization (e.g., "std::vector<INT>").
DeclSpec's TST_typedef has become TST_typename, to reflect its use to
describe types found by name (that may or may not be typedefs). The
type representation of a DeclSpec with TST_typename is an opaque
QualType pointer. All users of TST_typedef, both direct and indirect,
have been updated for these changes.
llvm-svn: 64141
redeclarations. For example, checks that a class template
redeclaration has the same template parameters as previous
declarations.
Detangled class-template checking from ActOnTag, whose logic was
getting rather convoluted because it tried to handle C, C++, and C++
template semantics in one shot.
Made some inroads toward eliminating extraneous "declaration does not
declare anything" errors by adding an "error" type specifier.
llvm-svn: 63973
This shrinks OwningResult by one pointer. Since it is no longer larger than OwningPtr, merge the two.
This leads to simpler client code and speeds up my benchmark by 2.7%.
For some reason, this exposes a previously hidden bug, causing a regression in SemaCXX/condition.cpp.
llvm-svn: 63867
.def file for each library. This means that adding a diagnostic
to sema doesn't require all the other libraries to be rebuilt.
Patch by Anders Johnsen!
llvm-svn: 63111
- When it's safe, ActionResult uses the low bit of the pointer for
the "invalid" flag rather than a separate "bool" value. This keeps
GCC from generating some truly awful code, for a > 3x speedup in the
result-passing microbenchmark.
- When DISABLE_SMART_POINTERS is defined, store an ActionResult
within ASTOwningResult rather than an ASTOwningPtr. Brings the
performance benefits of the above to smart pointers with
DISABLE_SMART_POINTERS defined.
Sadly, these micro-benchmark performance improvements don't seem to
make much of a difference on Cocoa.h right now. However, they're
harmless and might help with future optimizations.
llvm-svn: 63061
function DeclaratorChunk in common cases. This uses a fixed array in
Declarator when it is small enough for the first function declarator chunk
in a declarator.
This eliminates all malloc/free traffic from DeclaratorChunk::getFunction
when running on Cocoa.h except for five functions: signal/bsd_signal/sigset,
which have multiple Function DeclChunk's, and
CFUUIDCreateWithBytes/CFUUIDGetConstantUUIDWithBytes, which take more than
16 arguments.
This patch was pair programmed with Steve.
llvm-svn: 62599
C++ handle anonymous structs/unions in the same way. Addresses several
bugs:
<rdar://problem/6259534>
<rdar://problem/6481130>
<rdar://problem/6483159>
The test case in PR clang/1750 now passes with -fsyntax-only, but
CodeGen for inline assembler still fails.
llvm-svn: 62112
that is neither a definition nor a forward declaration and where X has
not yet been declared as a tag, introduce a declaration
into the appropriate scope (which is likely *not* to be the current
scope). The rules for the placement of the declaration differ slightly
in C and C++, so we implement both and test the various corner
cases. This implementation isn't 100% correct due to some lingering
issues with the function prototype scope (for a function parameter
list) not being the same scope as the scope of the function
definition. Testcase is FIXME'd; this probably isn't an important issue.
Addresses <rdar://problem/6484805>.
llvm-svn: 62014
introduce a Scope for the body of a tag. This reduces the number of
semantic differences between C and C++ structs and unions, and will
help with other features (e.g., anonymous unions) in C. Some important
points:
- Fields are now in the "member" namespace (IDNS_Member), to keep
them separate from tags and ordinary names in C. See the new test
in Sema/member-reference.c for an example of why this matters. In
C++, ordinary and member name lookup will find members in both the
ordinary and member namespace, so the difference between
IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but
only in C++!).
- We always introduce a Scope and push a DeclContext when we're
defining a tag, in both C and C++. Previously, we had different
actions and different Scope/CurContext behavior for enums, C
structs/unions, and C++ structs/unions/classes. Now, it's one pair
of actions. (Yay!)
There's still some fuzziness in the handling of struct/union/enum
definitions within other struct/union/enum definitions in C. We'll
need to do some more cleanup to eliminate some reliance on CurContext
before we can solve this issue for real. What we want is for something
like this:
struct X {
struct T { int x; } t;
};
to introduce T into translation unit scope (placing it at the
appropriate point in the IdentifierResolver chain, too), but it should
still have struct X as its lexical declaration
context. PushOnScopeChains isn't smart enough to do that yet, though,
so there's a FIXME test in nested-redef.c
llvm-svn: 61940
DeclContexts whose members are visible from enclosing DeclContexts up
to (and including) the innermost enclosing non-transparent
DeclContexts. Transparent DeclContexts unify the mechanism to be used
for various language features, including C enumerations, anonymous
unions, C++0x inline namespaces, and C++ linkage
specifications. Please refer to the documentation in the Clang
internals manual for more information.
Only enumerations and linkage specifications currently use transparent
DeclContexts.
Still to do: use transparent DeclContexts to implement anonymous
unions and GCC's anonymous structs extension, and, later, the C++0x
features. We also need to tighten up the DeclContext/ScopedDecl link
to ensure that every ScopedDecl is in a single DeclContext, which
will ensure that we can then enforce ownership and reduce the memory
footprint of DeclContext.
llvm-svn: 61735
semantics and improve our handling of default arguments. Specifically,
we follow this order:
- As soon as the see the '}' in the class definition, the class is
complete and we add any implicit declarations (default constructor,
copy constructor, etc.) to the class.
- If there are any default function arguments, parse them
- If there were any inline member function definitions, parse them
As part of this change, we now keep track of the the fact that we've
seen unparsed default function arguments within the AST. See the new
ParmVarDecl::hasUnparsedDefaultArg member. This allows us to properly
cope with calls inside default function arguments to other functions
where we're making use of the default arguments.
Made some C++ error messages regarding failed initializations more
specific.
llvm-svn: 61406
become useful or correct until we (1) parse template arguments
correctly, (2) have some way to turn template-ids into types,
declarators, etc., and (3) have a real representation of templates.
llvm-svn: 61208
array size declarators. No need to go through all the trouble
of parsing crazy things like [static const 4] when most code
doesn't need it.
llvm-svn: 61200
is completely defined (C++ [class.mem]p2).
Reverse the order in which we process the definitions of member
functions specified inline. This way, we'll get diagnostics in the
order in which the member functions were declared in the class.
llvm-svn: 61103
and separates lexical name lookup from qualified name lookup. In
particular:
* Make DeclContext the central data structure for storing and
looking up declarations within existing declarations, e.g., members
of structs/unions/classes, enumerators in C++0x enums, members of
C++ namespaces, and (later) members of Objective-C
interfaces/implementations. DeclContext uses a lazily-constructed
data structure optimized for fast lookup (array for small contexts,
hash table for larger contexts).
* Implement C++ qualified name lookup in terms of lookup into
DeclContext.
* Implement C++ unqualified name lookup in terms of
qualified+unqualified name lookup (since unqualified lookup is not
purely lexical in C++!)
* Limit the use of the chains of declarations stored in
IdentifierInfo to those names declared lexically.
* Eliminate CXXFieldDecl, collapsing its behavior into
FieldDecl. (FieldDecl is now a ScopedDecl).
* Make RecordDecl into a DeclContext and eliminates its
Members/NumMembers fields (since one can just iterate through the
DeclContext to get the fields).
llvm-svn: 60878
-Change Parser::ParseCXXScopeSpecifier to MaybeParseCXXScopeSpecifier
-Remove Parser::isTokenCXXScopeSpecifier and fold it into MaybeParseCXXScopeSpecifier
-Rename Parser::TryAnnotateScopeToken to TryAnnotateCXXScopeToken and only allow it to be called when in C++
llvm-svn: 60117
with implicit quotes around them. This has a bunch of follow-on
effects and requires tweaking to a whole lot of code. This causes
a regression in two tests (xfailed) by causing it to emit things like:
Line 10: duplicate interface declaration for category 'MyClass1' ('Category1')
instead of:
Line 10: duplicate interface declaration for category 'MyClass1(Category1)'
I will fix this in a follow-up commit.
As part of this, I had to start switching stuff to use ->getDeclName() instead
of Decl::getName() for consistency. This is good, but I was planning to do this
as an independent patch. There will be several follow-on patches
to clean up some of the mess, but this patch is already too big.
llvm-svn: 59917
operator+, directly, using the same mechanism as all other special
names.
Removed the "special" identifiers for the overloaded operators from
the identifier table and IdentifierInfo data structure. IdentifierInfo
is back to representing only real identifiers.
Added a new Action, ActOnOperatorFunctionIdExpr, that builds an
expression from an parsed operator-function-id (e.g., "operator
+"). ActOnIdentifierExpr used to do this job, but
operator-function-ids are no longer represented by IdentifierInfo's.
Extended Declarator to store overloaded operator names.
Sema::GetNameForDeclarator now knows how to turn the operator
name into a DeclarationName for the overloaded operator.
Except for (perhaps) consolidating the functionality of
ActOnIdentifier, ActOnOperatorFunctionIdExpr, and
ActOnConversionFunctionExpr into a common routine that builds an
appropriate DeclRefExpr by looking up a DeclarationName, all of the
work on normalizing declaration names should be complete with this
commit.
llvm-svn: 59526
and let the clients push whatever they want into the DiagnosticInfo
instead of hard coding a few forms. Also switch various clients to
use Diag(Tok, ...) instead of Diag(Tok.getLocation(), ...) as the
canonical form to simplify the code a bit.
llvm-svn: 59509
destructors, and conversion functions. The placeholders were used to
work around the fact that the parser and some of Sema really wanted
declarators to have simple identifiers; now, the code that deals with
declarators will use DeclarationNames.
llvm-svn: 59469
conversion functions. Instead, we just use a placeholder identifier
for these (e.g., "<constructor>") and override NamedDecl::getName() to
provide a human-readable name.
This is one potential solution to the problem; another solution would
be to replace the use of IdentifierInfo* in NamedDecl with a different
class that deals with identifiers better. I'm also prototyping that to
see how it compares, but this commit is better than what we had
previously.
llvm-svn: 59193
-When parsing declarators, don't depend on "CurScope->isCXXClassScope() == true" for constructors/destructors
-For C++ member declarations, don't depend on "Declarator.getContext() == Declarator::MemberContext"
llvm-svn: 58866
functions in C++, e.g.,
struct X {
operator bool() const;
};
Note that these conversions don't actually do anything, since we don't
yet have the ability to use them for implicit or explicit conversions.
llvm-svn: 58860
operators in C++. Overloaded operators can be called directly via
their operator-function-ids, e.g., "operator+(foo, bar)", but we don't
yet implement the semantics of operator overloading to handle, e.g.,
"foo + bar".
llvm-svn: 58817
Implicit declaration of destructors (when necessary).
Extended Declarator to store information about parsed constructors
and destructors; this will be extended to deal with declarators that
name overloaded operators (e.g., "operator +") and user-defined
conversion operators (e.g., "operator int").
llvm-svn: 58767
reference-collapsing.
Implement diagnostic for formation of a reference to cv void.
Drop cv-qualifiers added to a reference type when the reference type
comes from a typedef.
llvm-svn: 58612
Notes:
- Constructors are never found by name lookup, so they'll never get
pushed into any scope. Instead, they are stored as an
OverloadedFunctionDecl in CXXRecordDecl for easy overloading.
- There's a new action isCurrentClassName that determines whether an
identifier is the name of the innermost class currently being defined;
we use this to identify the declarator-id grammar rule that refers to
a type-name.
- MinimalAction does *not* support parsing constructors.
- We now handle virtual and explicit function specifiers.
llvm-svn: 58499
of copy initialization. Other pieces of the puzzle:
- Try/Perform-ImplicitConversion now handles implicit conversions
that don't involve references.
- Try/Perform-CopyInitialization uses
CheckSingleAssignmentConstraints for C. PerformCopyInitialization
is now used for all argument passing and returning values from a
function.
- Diagnose errors with declaring references and const values without
an initializer. (Uses a new Action callback, ActOnUninitializedDecl).
We do not yet have implicit conversion sequences for reference
binding, which means that we don't have any overloading support for
reference parameters yet.
llvm-svn: 58353
of whether a '(' was a grouping paren or the start of a function declarator.
This is PR2796.
Now we eat the attribute before deciding whether the paren is grouping or
not, then apply it to the resultant decl or to the first argument as needed.
One somewhat surprising aspect of this is that attributes interact with
implicit int in cases like this:
void a(x, y) // k&r style function
void b(__attribute__(()) x, y); // function with two implicit int arguments
void c(x, __attribute__(()) y); // error, can't have attr in identifier list.
Fun stuff.
llvm-svn: 57790
This is how this kind of initializers appear in the AST:
-The Init expression of the VarDecl is a functional type construction (of the VarDecl's type).
-The new VarDecl::hasCXXDirectInitializer() returns true.
e.g, for "int x(1);":
-VarDecl 'x' has Init with expression "int(1)" (CXXFunctionalCastExpr).
-hasCXXDirectInitializer() of VarDecl 'x' returns true.
A major benefit is that clients that don't particularly care about which exactly form was the initializer can handle both cases without special case code.
Note that codegening works now for "int x(1);" without any changes to CodeGen.
llvm-svn: 57178
- ActOnDeclarator now takes an additional parameter which is the
AsmLabel if used. Its unfortunate that this bubbles up this high,
but we cannot just lump it in as an attribute without mistakenly
*accepting* it as an attribute.
- The actual asm-label itself is, however, encoded as an AsmLabelAttr
on the FunctionDecl.
- Slightly improved parser error recovery on malformed asm-labels.
- CodeGen support still missing...
llvm-svn: 54339
1) reject stuff like "id<foo> short" and "<foo> short". 2) set
the declspec range correctly 3) only parse protocol qualifiers
when in objc mode.
llvm-svn: 54086
like "id<foo>". This 1) fixes an infinite loop in the parser on things
like "short<foo>" 2) emits a warning about this bogus construct and 3)
changes the testcase to be substantially reduced.
llvm-svn: 54082
of a specific smallvector size.
Fix protocol lists to pass down proper location info, so we get diagnostics
like this:
t.m:3:35: error: cannot find protocol definition for 'NSCopying', referenced by 'NSWhatever'
@interface NSWhatever : NSObject <NSCopying>
^
instead of this:
t.m:3:44: error: cannot find protocol definition for 'NSCopying', referenced by 'NSWhatever'
@interface NSWhatever : NSObject <NSCopying>
^
Add a new IdentifierLocPair typedef which is just a pair<IdentifierInfo*, SourceLocation>
llvm-svn: 53883
/* Make "<SomeProtocol>" equivalent to "id <SomeProtocol>" - nisse@lysator.liu.se. */
This commit adds the parser magic. The type associated with <p> is still incorrect. Will discuss with Chris.
llvm-svn: 51972
-identifierResolver exposes an iterator interface to get all decls through the scope chain.
-The semantic staff (checking IdentifierNamespace and Doug's checking for shadowed tags were moved out of IdentifierResolver and back into Sema. IdentifierResolver just gives an iterator for all reachable decls of an identifier.
llvm-svn: 50923
inheritance in C++. It'll parse the base-specifier list, e.g.,
class D : public B1, virtual public B2 { };
and do some of the simpler semantic checks (B1 and B2 are classes;
they aren't unions or incomplete types, etc).
llvm-svn: 49623
allows the parsing of "class" in addition to "struct" and "union" to
declare a record. So this patch allows:
class C { };
class C c1;
But it does not contain the lookup bits, so this won't work yet:
C c2;
Patch by Doug Gregor!
llvm-svn: 49613
1) objc ivar processing is split out of ActOnField into its own ActOnIvar method.
2) the new objc ivar action takes visibility info directly, eliminating
AllVisibilities in ParseObjCClassInstanceVariables.
llvm-svn: 49506
declarators. This allows the clients (C structs, objc classes, objc
properties, [future] C++ classes) etc, to do custom processing before invoking
an action.
This has two benefits in the short term:
1) objc ivar processing should be split out of ActOnField into its own ActOn method.
2) the new objc ivar action can take visibility info directly, eliminating
AllVisibilities in ParseObjCClassInstanceVariables.
3) objc properties can pass their own special sauce down to sema as well.
llvm-svn: 49468
lib dir and move all the libraries into it. This follows the main
llvm tree, and allows the libraries to be built in parallel. The
top level now enforces that all the libs are built before Driver,
but we don't care what order the libs are built in. This speeds
up parallel builds, particularly incremental ones.
llvm-svn: 48402