The approach I've taken in this patch is relatively straightforward,
although the code itself is non-trivial. Essentially, as we process
an initializer list we build up a fully-explicit representation of the
initializer list, where each of the subobject initializations occurs
in order. Designators serve to "fill in" subobject initializations in
a non-linear way. The fully-explicit representation makes initializer
lists (both with and without designators) easy to grok for codegen and
later semantic analyses. We keep the syntactic form of the initializer
list linked into the AST for those clients interested in exactly what
the user wrote.
Known limitations:
- Designating a member of a union that isn't the first member may
result in bogus initialization (we warn about this)
- GNU array-range designators are not supported (we warn about this)
llvm-svn: 63242
Also changed FunctionTypeProto to be allocated with 8-byte alignment (noticed by Doug). I couldn't think of any reason to allocate on 16-byte boundaries. If anyone remembers why we were doing this, let me know!
llvm-svn: 63137
This will simplify runtime replacement of ASTContext's allocator. Keeping the allocator private (and removing getAllocator() entirely) is also goodness.
llvm-svn: 63135
.def file for each library. This means that adding a diagnostic
to sema doesn't require all the other libraries to be rebuilt.
Patch by Anders Johnsen!
llvm-svn: 63111
as reported to the user and as manipulated by #line. This is what __FILE__,
__INCLUDE_LEVEL__, diagnostics and other things should follow (but not
dependency generation!).
This patch also includes several cleanups along the way:
- SourceLocation now has a dump method, and several other places
that did similar things now use it.
- I cleaned up some code in AnalysisConsumer, but it should probably be
simplified further now that NamedDecl is better.
- TextDiagnosticPrinter is now simplified and cleaned up a bit.
This patch is a prerequisite for #line, but does not actually provide
any #line functionality.
llvm-svn: 63098
accurately states what the function is trying to do and how it is
different from Expr::isEvaluatable. Also get rid of a parameter that is both
unused and inaccurate.
llvm-svn: 62951
designated initializers. This implementation should cover all of the
constraints in C99 6.7.8, including long, complex designations and
computing the size of incomplete array types initialized with a
designated initializer. Please see the new test-case and holler if you
find cases where this doesn't work.
There are still some wrinkles with GNU's anonymous structs and
anonymous unions (it isn't clear how these should work; we'll just
follow GCC's lead) and with designated initializers for the members of a
union. I'll tackle those very soon.
CodeGen is still nonexistent, and there's some leftover code in the
parser's representation of designators that I'll also need to clean up.
llvm-svn: 62737
that every declaration lives inside a DeclContext.
Moved several things that don't have names but were ScopedDecls (and,
therefore, NamedDecls) to inherit from Decl rather than NamedDecl,
including ObjCImplementationDecl and LinkageSpecDecl. Now, we don't
store empty DeclarationNames for these things, nor do we try to insert
them into DeclContext's lookup structure.
The serialization tests are temporarily disabled. We'll re-enable them
once we've sorted out the remaining ownership/serialiazation issues
between DeclContexts and TranslationUnion, DeclGroups, etc.
llvm-svn: 62562
even when we are still defining the TagDecl. This is required so that
qualified name lookup of a class name within its definition works (see
the new bits in test/SemaCXX/qualified-id-lookup.cpp).
As part of this, move the nested redefinition checking code into
ActOnTag. This gives us diagnostics earlier (when we try to perform
the nested redefinition, rather than when we try to complete the 2nd
definition) and removes some code duplication.
llvm-svn: 62386
analysis and AST-building for the cases where we have N != 1
arguments. For N == 1 arguments, we need to finish the C++
implementation of explicit type casts (C++ [expr.cast]).
llvm-svn: 62329
the "physical" location of tokens, refer to the "spelling" location.
This is more concrete and useful, tokens aren't really physical objects!
llvm-svn: 62309
of ScopedDecls (using the new ScopedDecl::NextDeclInScope
pointer). Performance-wise:
- It's a net win in memory utilization, since DeclContext is now one
pointer smaller than it used to be (std::vectors are typically 3
pointers; we now use 2 pointers) and
- Parsing Cocoa.h with -fsyntax-only (with a Release-Asserts Clang)
is about 1.9% faster than before, most likely because we no longer
have the memory allocations and copying associated with the
std::vector.
I'll re-enable serialization of DeclContexts once I've sorted out the
NextDeclarator/NextDeclInScope question.
llvm-svn: 62001
filters the decls seen by decl_iterator with two criteria: the dynamic
type of the declaration and a run-time predicate described by a member
function. This simplifies EnumDecl, RecordDecl, and ObjCContainerDecl
considerably. It has no measurable performance impact.
llvm-svn: 61994
Add isa/cast/dyncast support for ObjCContainerDecl.
Renamed classprop_iterator/begin/end to prop_iterator/begin/end (the class prefix was confusing).
More simplifications to Sema::ActOnAtEnd()...
Added/changed some FIXME's as a result of the above work.
llvm-svn: 61988
rewrite @class declarations that showed up within linkage
specifications because those @class declarations never made it any
place where the rewriter could find them.
Moved all of the ObjC*Decl nodes over to ScopedDecls, so that they can
live in the appropriate top-level or transparent DeclContext near the
top level, e.g., TranslationUnitDecl or LinkageSpecDecl. Objective-C
declarations now show up in a traversal of the declarations in a
DeclContext (they didn't before!). This way, the rewriter finds all
Objective-C declarations within linkage specifications.
llvm-svn: 61966
introduce a Scope for the body of a tag. This reduces the number of
semantic differences between C and C++ structs and unions, and will
help with other features (e.g., anonymous unions) in C. Some important
points:
- Fields are now in the "member" namespace (IDNS_Member), to keep
them separate from tags and ordinary names in C. See the new test
in Sema/member-reference.c for an example of why this matters. In
C++, ordinary and member name lookup will find members in both the
ordinary and member namespace, so the difference between
IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but
only in C++!).
- We always introduce a Scope and push a DeclContext when we're
defining a tag, in both C and C++. Previously, we had different
actions and different Scope/CurContext behavior for enums, C
structs/unions, and C++ structs/unions/classes. Now, it's one pair
of actions. (Yay!)
There's still some fuzziness in the handling of struct/union/enum
definitions within other struct/union/enum definitions in C. We'll
need to do some more cleanup to eliminate some reliance on CurContext
before we can solve this issue for real. What we want is for something
like this:
struct X {
struct T { int x; } t;
};
to introduce T into translation unit scope (placing it at the
appropriate point in the IdentifierResolver chain, too), but it should
still have struct X as its lexical declaration
context. PushOnScopeChains isn't smart enough to do that yet, though,
so there's a FIXME test in nested-redef.c
llvm-svn: 61940
- ObjCContainerDecl's (ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl), ObjCCategoryImpl, & ObjCImplementation are all DeclContexts.
- ObjCMethodDecl is now a ScopedDecl (so it can play nicely with DeclContext).
- ObjCContainerDecl now does iteration/lookup using DeclContext infrastructure (no more linear search:-)
- Removed ASTContext argument to DeclContext::lookup(). It wasn't being used and complicated it's use from an ObjC AST perspective.
- Added Sema::ProcessPropertyDecl() and removed Sema::diagnosePropertySetterGetterMismatch().
- Simplified Sema::ActOnAtEnd() considerably. Still more work to do.
- Fixed an incorrect casting assumption in Sema::getCurFunctionOrMethodDecl(), now that ObjCMethodDecl is a ScopedDecl.
- Removed addPropertyMethods from ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl.
This passes all the tests on my machine. Since many of the changes are central to the way ObjC finds it's methods, I expect some fallout (and there are still a handful of FIXME's). Nevertheless, this should be a step in the right direction.
llvm-svn: 61929
Duplicate-member checking within classes is still a little messy, and
anonymous unions are still completely broken in C. We'll need to unify
the handling of fields in C and C++ to make this code applicable in
both languages.
llvm-svn: 61878
structures and classes) in C++. Covers name lookup and the synthesis
and member access for the unnamed objects/fields associated with
anonymous unions.
Some C++ semantic checks are still missing (anonymous unions can't
have function members, static data members, etc.), and there is no
support for anonymous structs or unions in C.
llvm-svn: 61840
information for declarations that were referenced via a qualified-id,
e.g., N::C::value. We keep track of the location of the start of the
nested-name-specifier. Note that the difference between
QualifiedDeclRefExpr and DeclRefExpr does have an effect on the
semantics of function calls in two ways:
1) The use of a qualified-id instead of an unqualified-id suppresses
argument-dependent lookup
2) If the name refers to a virtual function, the qualified-id
version will call the function determined statically while the
unqualified-id version will call the function determined dynamically
(by looking up the appropriate function in the vtable).
Neither of these features is implemented yet, but we do print out
qualified names for QualifiedDeclRefExprs as part of the AST printing.
llvm-svn: 61789
Make C++ classes track the POD property (C++ [class]p4)
Track the existence of a copy assignment operator.
Implicitly declare the copy assignment operator if none is provided.
Implement most of the parsing job for the G++ type traits extension.
Fully implement the low-hanging fruit of the type traits:
__is_pod: Whether a type is a POD.
__is_class: Whether a type is a (non-union) class.
__is_union: Whether a type is a union.
__is_enum: Whether a type is an enum.
__is_polymorphic: Whether a type is polymorphic (C++ [class.virtual]p1).
llvm-svn: 61746
DeclContexts whose members are visible from enclosing DeclContexts up
to (and including) the innermost enclosing non-transparent
DeclContexts. Transparent DeclContexts unify the mechanism to be used
for various language features, including C enumerations, anonymous
unions, C++0x inline namespaces, and C++ linkage
specifications. Please refer to the documentation in the Clang
internals manual for more information.
Only enumerations and linkage specifications currently use transparent
DeclContexts.
Still to do: use transparent DeclContexts to implement anonymous
unions and GCC's anonymous structs extension, and, later, the C++0x
features. We also need to tighten up the DeclContext/ScopedDecl link
to ensure that every ScopedDecl is in a single DeclContext, which
will ensure that we can then enforce ownership and reduce the memory
footprint of DeclContext.
llvm-svn: 61735
semantics and improve our handling of default arguments. Specifically,
we follow this order:
- As soon as the see the '}' in the class definition, the class is
complete and we add any implicit declarations (default constructor,
copy constructor, etc.) to the class.
- If there are any default function arguments, parse them
- If there were any inline member function definitions, parse them
As part of this change, we now keep track of the the fact that we've
seen unparsed default function arguments within the AST. See the new
ParmVarDecl::hasUnparsedDefaultArg member. This allows us to properly
cope with calls inside default function arguments to other functions
where we're making use of the default arguments.
Made some C++ error messages regarding failed initializations more
specific.
llvm-svn: 61406
attached to an identifier. Instead, all overloaded functions will be
pushed into scope, and we'll synthesize an OverloadedFunctionDecl on
the fly when we need it.
llvm-svn: 61386
DeclContext. Instead, just keep the list of currently-active
declarations and only build the OverloadedFunctionDecl when we
absolutely need it.
This is a half-step toward eliminating the need to explicitly build
OverloadedFunctionDecls that store sets of overloaded
functions. This was suggested by Argiris a while back, and it's a good
thing for several reasons: first, it eliminates the messy logic that
currently tries to keep the OverloadedFunctionDecl in sync with the
declarations that are being added. Second, it will (eventually)
eliminate the need to allocate memory for overload sets, which could
help performance. Finally, it helps set us up for when name lookup can
return multiple (possibly ambiguous) results, as can happen with
lookup of class members in C++.
Next steps: make the IdentifierResolver store overloads as separate
entries in its list rather than replacing them with an
OverloadedFunctionDecl now, then see how far we can go toward
eliminating OverloadedFunctionDecl entirely.
llvm-svn: 61357
- Overloading has to cope with having both static and non-static
member functions in the overload set.
- The call may or may not have an implicit object argument,
depending on the syntax (x.f() vs. f()) and the context (static
vs. non-static member function).
- We now generate MemberExprs for implicit member access expression.
- We now cope with mutable whenever we're building MemberExprs.
llvm-svn: 61329
which can refer to static data members, enumerators, and member
functions as well as to non-static data members.
Implement correct lvalue computation for member references in C++.
Compute the result type of non-static data members of reference type properly.
llvm-svn: 61294
full encoding of the class which has an ivar of pointer to this
class. Its name is encoded in the type for the ivar in the
ivar-list metadata. This patch conforms to the above rule.
llvm-svn: 61282
This was a recent regression caused by r61043 (related to code gen. for ivar references).
Fariborz, please review. I have some other concerns related to code generation for ivars that we can discuss later.
llvm-svn: 61134
just like all other members, and remove the special variables in
CXXRecordDecl to store them. This eliminates a lot of special-case
code for constructors and destructors, including
ActOnConstructor/ActOnDeclarator and special lookup rules in
LookupDecl. The result is far more uniform and manageable.
Diagnose the redeclaration of member functions.
llvm-svn: 61048
and separates lexical name lookup from qualified name lookup. In
particular:
* Make DeclContext the central data structure for storing and
looking up declarations within existing declarations, e.g., members
of structs/unions/classes, enumerators in C++0x enums, members of
C++ namespaces, and (later) members of Objective-C
interfaces/implementations. DeclContext uses a lazily-constructed
data structure optimized for fast lookup (array for small contexts,
hash table for larger contexts).
* Implement C++ qualified name lookup in terms of lookup into
DeclContext.
* Implement C++ unqualified name lookup in terms of
qualified+unqualified name lookup (since unqualified lookup is not
purely lexical in C++!)
* Limit the use of the chains of declarations stored in
IdentifierInfo to those names declared lexically.
* Eliminate CXXFieldDecl, collapsing its behavior into
FieldDecl. (FieldDecl is now a ScopedDecl).
* Make RecordDecl into a DeclContext and eliminates its
Members/NumMembers fields (since one can just iterate through the
DeclContext to get the fields).
llvm-svn: 60878
code were working correctly, it would be a no-op, but it's not really a
proper fix. That said, I don't really want to touch the enum code at
the moment because I don't understand it very well, and this seems to
be a relatively visible regression.
llvm-svn: 60680
template<typename T> void f(T x) {
g(x); // g is a dependent name, so don't even bother to look it up
g(); // error: g is not a dependent name
}
Note that when we see "g(", we build a CXXDependentNameExpr. However,
if none of the call arguments are type-dependent, we will force the
resolution of the name "g" and replace the CXXDependentNameExpr with
its result.
GCC actually produces a nice error message when you make this
mistake, and even offers to compile your code with -fpermissive. I'll
do the former next, but I don't plan to do the latter.
llvm-svn: 60618
expressions, and value-dependent expressions. This permits us to parse
some template definitions.
This is not a complete solution; we're missing type- and
value-dependent computations for most of the expression types, and
we're missing checks for dependent types and type-dependent
expressions throughout Sema.
llvm-svn: 60615
property. It also checks for duplicate use of the same ivar
in two different iproperty implementations. It also caught
an error for a test case used in CodeGen :).
llvm-svn: 60610
parameters, with some semantic analysis:
- Template parameters are introduced into template parameter scope
- Complain about template parameter shadowing (except in Microsoft mode)
Note that we leak template parameter declarations like crazy, a
problem we'll remedy once we actually create proper declarations for
templates.
Next up: dependent types and value-dependent/type-dependent
expressions.
llvm-svn: 60597
- Implement RewritePropertySetter(). While the routine is simple, there were some tricky changes to RewriteFunctionBodyOrGlobalInitializer(), the main rewriter loop. It also required some additional instance data to distinguish setters from getters, as well as some changes to RewritePropertyGetter().
- Implement FIXME: for pretty printing ObjCPropertyRefExpr's.
- Changed ObjCPropertyRefExpr::getSourceRange() to point to the end of the property name (not the beginning). Also made a minor name change from "Loc"->"IdLoc" (to make it clear the Loc does not point to the ".").
llvm-svn: 60540
a property. Previous scheme of seaching in interface's list of methods
would not work because this list is not yet constructed. This is in preparation
for doing semantic check on viability of setter/getter method declarations.
llvm-svn: 60386
assert if the name is not an identifier. Update callers to do the right
thing and avoid this method in unsafe cases. This also fixes an objc
warning that was missing a space, and migrates a couple more to taking
IdentifierInfo and QualTypes instead of std::strings.
llvm-svn: 59936
a new NamedDecl::getAsString() method.
Change uses of Selector::getName() to just pass in a Selector
where possible (e.g. to diagnostics) instead of going through
an std::string.
This also adds new formatters for objcinstance and objcclass
as described in the dox.
llvm-svn: 59933
struct A {
struct B;
};
struct A::B {
void m() {} // Assertion failed: getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
};
Introduce DeclContext::getLexicalParent which may be different from DeclContext::getParent when nested-names are involved, e.g:
namespace A {
struct S;
}
struct A::S {}; // getParent() == namespace 'A'
// getLexicalParent() == translation unit
llvm-svn: 59650
built-in operator candidates. Test overloading of '&' and ','.
In C++, a comma expression is an lvalue if its right-hand
subexpression is an lvalue. Update Expr::isLvalue accordingly.
llvm-svn: 59643
post-decrement, including support for generating all of the built-in
operator candidates for these operators.
C++ and C have different rules for the arguments to the builtin unary
'+' and '-'. Implemented both variants in Sema::ActOnUnaryOp.
In C++, pre-increment and pre-decrement return lvalues. Update
Expr::isLvalue accordingly.
llvm-svn: 59638
operator+, directly, using the same mechanism as all other special
names.
Removed the "special" identifiers for the overloaded operators from
the identifier table and IdentifierInfo data structure. IdentifierInfo
is back to representing only real identifiers.
Added a new Action, ActOnOperatorFunctionIdExpr, that builds an
expression from an parsed operator-function-id (e.g., "operator
+"). ActOnIdentifierExpr used to do this job, but
operator-function-ids are no longer represented by IdentifierInfo's.
Extended Declarator to store overloaded operator names.
Sema::GetNameForDeclarator now knows how to turn the operator
name into a DeclarationName for the overloaded operator.
Except for (perhaps) consolidating the functionality of
ActOnIdentifier, ActOnOperatorFunctionIdExpr, and
ActOnConversionFunctionExpr into a common routine that builds an
appropriate DeclRefExpr by looking up a DeclarationName, all of the
work on normalizing declaration names should be complete with this
commit.
llvm-svn: 59526
destructors, and conversion functions. The placeholders were used to
work around the fact that the parser and some of Sema really wanted
declarators to have simple identifiers; now, the code that deals with
declarators will use DeclarationNames.
llvm-svn: 59469
C++ constructors, destructors, and conversion functions now have a
FETokenInfo field that IdentifierResolver can access, so that these
special names are handled just like ordinary identifiers. A few other
Sema routines now use DeclarationNames instead of IdentifierInfo*'s.
To validate this design, this code also implements parsing and
semantic analysis for id-expressions that name conversion functions,
e.g.,
return operator bool();
The new parser action ActOnConversionFunctionExpr takes the result of
parsing "operator type-id" and turning it into an expression, using
the IdentifierResolver with the DeclarationName of the conversion
function. ActOnDeclarator pushes those conversion function names into
scope so that the IdentifierResolver can find them, of course.
llvm-svn: 59462
representing the names of declarations in the C family of
languages. DeclarationName is used in NamedDecl to store the name of
the declaration (naturally), and ObjCMethodDecl is now a NamedDecl.
llvm-svn: 59441
function call created in response to the use of operator syntax that
resolves to an overloaded operator in C++, e.g., "str1 +
str2" that resolves to std::operator+(str1, str2)". We now build a
CXXOperatorCallExpr in C++ when we pick an overloaded operator. (But
only for binary operators, where we actually implement overloading)
I decided *not* to refactor the current CallExpr to make it abstract
(with FunctionCallExpr and CXXOperatorCallExpr as derived
classes). Doing so would allow us to make CXXOperatorCallExpr a little
bit smaller, at the cost of making the argument and callee accessors
virtual. We won't know if this is going to be a win until we can parse
lots of C++ code to determine how much memory we'll save by making
this change vs. the performance penalty due to the extra virtual
calls.
llvm-svn: 59306
some more bullet-proofing/enhancements for tryEvaluate. This shouldn't
cause any behavior changes except for handling cases where we were
crashing before and being able to evaluate a few more cases in tryEvaluate.
This should settle the minor mess surrounding r59196.
llvm-svn: 59224
little rude; I figure it's cleaner to just back this out now so
it doesn't get forgotten or mixed up with other checkins.
The modification to isICE is simply wrong; I've added a test that the
change to isICE breaks.
I'm pretty sure the modification to tryEvaluate is also wrong.
At the very least, there's some serious miscommunication going on here,
as this is going in exactly the opposite direction of r59105. My
understanding is that tryEvaluate is not supposed to care about side
effects. That said, a lot of the clients to tryEvaluate are
expecting it to enforce a no-side-effects policy, so we probably need
another method that provides that guarantee.
llvm-svn: 59212
- Evaluation of , operator used bogus assumption that LHS could be
evaluated as an integral expression even though its type is
unspecified.
This change is making isICE very permissive of the LHS in non-evaluated
contexts because it is not clear what predicate we would use to reject
code here. The standard didn't offer me any guidance; opinions?
llvm-svn: 59196
conversion functions. Instead, we just use a placeholder identifier
for these (e.g., "<constructor>") and override NamedDecl::getName() to
provide a human-readable name.
This is one potential solution to the problem; another solution would
be to replace the use of IdentifierInfo* in NamedDecl with a different
class that deals with identifiers better. I'm also prototyping that to
see how it compares, but this commit is better than what we had
previously.
llvm-svn: 59193
functions for built-in operators, e.g., the builtin
bool operator==(int const*, int const*)
can be used for the expression "x1 == x2" given:
struct X {
operator int const*();
} x1, x2;
The scheme for handling these built-in operators is relatively simple:
for each candidate required by the standard, create a special kind of
candidate function for the built-in. If overload resolution picks the
built-in operator, we perform the appropriate conversions on the
arguments and then let the normal built-in operator take care of it.
There may be some optimization opportunity left: if we can reduce the
number of built-in operator overloads we generate, overload resolution
for these cases will go faster. However, one must be careful when
doing this: GCC generates too few operator overloads in our little
test program, and fails to compile it because none of the overloads it
generates match.
Note that we only support operator overload for non-member binary
operators at the moment. The other operators will follow.
As part of this change, ImplicitCastExpr can now be an lvalue.
llvm-svn: 59148
This pushes it a lot closer to being able to deal with most of the stuff
CodeGen's constant expression evaluator knows how to deal with. This
also fixes PR3003.
The test could possibly use some improvement, but this'll work for now.
Test 6 is inspired by PR3003; the other tests are mostly just designed
to exercise the new code. The reason for the funny structure of the
tests is that type fixing for arrays inside of structs is the only place
in Sema that calls tryEvaluate, at least for the moment.
llvm-svn: 59125