Scops that only read seem generally uninteresting and scops that only write are
most likely initializations where there is also little to optimize. To not
waste compile time we bail early.
Differential Revision: http://reviews.llvm.org/D7735
llvm-svn: 229820
This allows us to model PHI nodes in the polyhedral description
without demoting them. The modeling however will result in the
same accesses as the demotion would have introduced.
Differential Revision: http://reviews.llvm.org/D7415
llvm-svn: 228433
The support is currently limited as we only allow them in the input but do
not emit them in the transformed SCoP due to the possible semantic changes.
Differential Revision: http://reviews.llvm.org/D5225
llvm-svn: 227054
This support is still incomplete and consequently hidden behind a switch that
needs to be enabled. One problem is ATM that we incorrectly interpret very large
unsigned values as negative values even if used in an unsigned comparision.
llvm-svn: 225480
AF = dyn_cast<SCEVAddRecExpr>(Pair.second) may be NULL for some SCEVs that we do
not support. When reporting the error we still want to pass a pointer that is
known to always be non-NULL.
I do not yet have a test case for this, unfortunately.
llvm-svn: 225461
This commit drops the Cloog support for Polly. The scripts and
documentation are changed to only use isl as prerequisity. In the code
all Cloog specific parts have been removed and all relevant tests have
been ported to the isl backend when it was created.
llvm-svn: 223141
SCEV based code generation has been the default for two weeks after having
been tested for a long time. We now drop the support the non-scev-based code
generation.
llvm-svn: 222978
By adding braces into the DEBUG statement we can make clang-format format code
such as:
DEBUG(stmt1(); stmt2())
as multi-line code:
DEBUG({
stmt1();
stmt2();
});
This makes control-flow in debug statements easier to read.
llvm-svn: 220441
This patch changes the RegionSet type used in ScopDetection from a
std::set to a llvm::SetVector. The reason for the change is to
ensure deterministic output when printing the result of the
analysis. We had a windows buildbot failure for the modified test
because the output was coming in a different order.
Only one test case needed to be modified for this change. We could
use CHECK-DAG directives instead of CHECK in the analysis test cases
because the actual order of scops does not matter, but I think that
change should be done in a separate patch that modifies all the
appliciable tests. I simply modified the test to reflect the
expected deterministic output.
Differential Revision: http://reviews.llvm.org/D5897
llvm-svn: 220423
This resolved the issues with delinearized accesses that might alias,
thus delinearization doesn't deactivate runtime alias checks anymore.
Differential Revision: http://reviews.llvm.org/D5614
llvm-svn: 219078
This is just a optimization to save the compile time and execution time
for runtime alias checks if the user guarantees no aliasing all together.
llvm-svn: 218613
The run-time alias check places code that involves the base pointer at the
beginning of the SCoP. This breaks if the base pointer is defined inside the
SCoP. Hence, we can only create a run-time alias check if we are sure the base
pointer is not an instruction defined inside the scop. If it is we refuse to
handle the SCoP.
This commit should unbreak most of our current LNT failures.
Differential Revision: http://reviews.llvm.org/D5483
llvm-svn: 218412
This change will build all alias groups (minimal/maximal accesses
to possible aliasing base pointers) we have to check before
we can assume an alias free environment. It will also use these
to create Runtime Alias Checks (RTC) in the ISL code generation
backend, thus allow us to optimize SCoPs despite possibly aliasing
pointers when this backend is used.
This feature will be enabled for the isl code generator, e.g.,
--polly-code-generator=isl, but disabled for:
- The cloog code generator (still the default).
- The case delinearization is enabled.
- The case non-affine accesses are allowed.
llvm-svn: 218046
Even though we previously correctly detected the multi-dimensional access
pattern for accesses with a certain base address, we only delinearized
non-affine accesses to this address. Affine accesses have not been touched and
remained as single dimensional accesses. The result was an inconsistent
description of accesses to the same array, with some being one dimensional and
some being multi-dimensional.
This patch ensures that all accesses are delinearized with the same
dimensionality as soon as a single one of them has been detected as non-affine.
While writing this patch, it became evident that the options
-polly-allow-nonaffine and -polly-detect-keep-going have not been properly
supported in case delinearization has been turned on. This patch adds relevant
test coverage and addresses these issues as well. We also added some more
documentation to the functions that are modified in this patch.
This fixes llvm.org/PR20123
Differential Revision: http://reviews.llvm.org/D5329
llvm-svn: 217728
At the moment we assume that only elements of identical size are stored/loaded
to a certain base pointer. This patch adds logic to the scop detection to verify
this.
Differential Revision: http://reviews.llvm.org/D5329
llvm-svn: 217727
It seems we added guards to check for non-existing std::map elements to make
sure they are default constructed before first accessed. Besides, the code
being wrong because of checking Context.NonAffineAccesses[BasePointer].size()
instead of Context.cound(BasePointer), such a check is also not necessary
as std::map takes care of this already.
From the std::map documentation:
"If k does not match the key of any element in the container, the function
inserts a new element with that key and returns a reference to its mapped value.
Notice that this always increases the container size by one, even if no mapped
value is assigned to the element (the element is constructed using its default
constructor)."
llvm-svn: 217506
Enabling -keep-going in ScopDetection causes expansion to an invalid
Scop candidate.
Region A <- Valid candidate
|
Region B <- Invalid candidate
If -keep-going is enabled, ScopDetection would expand A to A+B because
the RejectLog is never checked for errors during expansion.
With this patch only A becomes a valid Scop.
llvm-svn: 211875
Use a container class to store the reject logs. Delegating most calls to
the internal std::map and add a few convenient shortcuts (e.g.,
hasErrors()).
llvm-svn: 211780
Add support for generating optimization remarks after completing the
detection of Scops.
The goal is to provide end-users with useful hints about opportunities that
help to increase the size of the detected Scops in their code.
By default the remark is unspecified and the debug location is empty. Future
patches have to expand on the messages generated.
This patch brings a simple test case for ReportFuncCall to demonstrate the
feature.
Reports all missed opportunities to increase the size/number of valid
Scops:
clang <...> -Rpass-missed="polly-detect" <...>
opt <...> -pass-remarks-missed="polly-detect" <...>
Reports beginning and end of all valid Scops:
clang <...> -Rpass="polly-detect" <...>
opt <...> -pass-remarks="polly-detect" <...>
Differential Revision: http://reviews.llvm.org/D4171
llvm-svn: 211769
Fixes#19976.
The error log does not contain an error, in case we reject a candidate
without generating a diagnostic message by using invalid<>(...). This is
the case for the top-level region of a function.
The patch comes without a test-case because adding a useful one requires
additional code just for triggering it. Before the patch it would only trigger,
if we try to print the CFG with Scop error annotations.
llvm-svn: 210753
Without this patch, the testcase would fail on the delinearization of the second
array:
; void foo(long n, long m, long o, double A[n][m][o]) {
; for (long i = 0; i < n; i++)
; for (long j = 0; j < m; j++)
; for (long k = 0; k < o; k++) {
; A[i+3][j-4][k+7] = 1.0;
; A[i][0][k] = 2.0;
; }
; }
; CHECK: [n, m, o] -> { Stmt_for_body6[i0, i1, i2] -> MemRef_A[3 + i0, -4 + i1, 7 + i2] };
; CHECK: [n, m, o] -> { Stmt_for_body6[i0, i1, i2] -> MemRef_A[i0, 0, i2] };
Here is the output of FileCheck on the testcase without this patch:
; CHECK: [n, m, o] -> { Stmt_for_body6[i0, i1, i2] -> MemRef_A[i0, 0, i2] };
^
<stdin>:26:2: note: possible intended match here
[n, m, o] -> { Stmt_for_body6[i0, i1, i2] -> MemRef_A[o0] };
^
It is possible to find a good delinearization for A[i][0][k] only in the context
of the delinearization of both array accesses.
There are two ways to delinearize together all array subscripts touching the
same base address: either duplicate the code from scop detection to first gather
all array references and then run the delinearization; or as implemented in this
patch, use the same delinearization info that we computed during scop detection.
llvm-svn: 210117
Instead of relying on the delinearization to infer the size of an element,
compute the element size from the base address type. This is a much more precise
way of computing the element size than before, as we would have mixed together
the size of an element with the strides of the innermost dimension.
llvm-svn: 209695
Support a 'keep-going' mode for the ScopDetection. In this mode, we just keep
on detecting, even if we encounter an error.
This is useful for diagnosing SCoP candidates. Sometimes you want all the
errors. Invalid SCoPs will still be refused in the end, we just refuse to
abort on the first error.
llvm-svn: 209574
This stores all RejectReasons created for one region
in a RejectLog inside the DetectionContext. For now
this only keeps track of the last error.
A separate patch will enable the tracking of all errors.
This patch itself does no harm (yet).
llvm-svn: 209572
definition below all of the header #include lines, Polly edition.
If you want to know more details about this, you can see the recent
commits to Debug.h in LLVM. This is just the Polly segment of a cleanup
I'm doing globally for this macro.
llvm-svn: 206852