Looks like our cmake goop for handling .inc->td dependencies doesn't
track the .td files.
This manifests as cmake complaining about missing files since r293009.
Force a rerun to avoid that.
llvm-svn: 293012
loops.
We do this by reconstructing the newly added loops after the unroll
completes to avoid threading pass manager details through all the mess
of the unrolling infrastructure.
I've enabled some extra assertions in the LPM to try and catch issues
here and enabled a bunch of unroller tests to try and make sure this is
sane.
Currently, I'm manually running loop-simplify when needed. That should
go away once it is folded into the LPM infrastructure.
Differential Revision: https://reviews.llvm.org/D28848
llvm-svn: 293011
This surprisingly isn't NFC because there are patterns to select GPR
sub to SUBSWrr (rather than SUBWrr/rs); SUBS is later optimized to
SUB if NZCV is dead. From ISel's perspective, both are fine.
llvm-svn: 293010
Summary:
When we decide that the result of the invoke instruction need to be spilled, we need to insert the spill into a block that is on the normal edge coming out of the invoke instruction. (Prior to this change the code would insert the spill immediately after the invoke instruction, which breaks the IR, since invoke is a terminator instruction).
In the following example, we will split the edge going into %cont and insert the spill there.
```
%r = invoke double @print(double 0.0) to label %cont unwind label %pad
cont:
%0 = call i8 @llvm.coro.suspend(token none, i1 false)
switch i8 %0, label %suspend [i8 0, label %resume
i8 1, label %cleanup]
resume:
call double @print(double %r)
```
Reviewers: majnemer
Reviewed By: majnemer
Subscribers: mehdi_amini, llvm-commits, EricWF
Differential Revision: https://reviews.llvm.org/D29102
llvm-svn: 293006
Summary:
This lets you select which sort of spilling you want, either s[0:1] or 64-bit loads from s[0:1].
Patch By: Dave Airlie
Reviewers: nhaehnle, arsenm, tstellarAMD
Reviewed By: arsenm
Subscribers: mareko, llvm-commits, kzhuravl, wdng, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D25428
llvm-svn: 293000
There was a bug here where we were using p0 instead of s32 for the
selector type in the landingpad. Instead of hardcoding these types we
should get the types from the landingpad instruction directly.
Note that we replicate an assert from SDAG here to only support
two-valued landingpads.
llvm-svn: 292995
for CPU_SUBTYPE_ARM_V7S and CPU_SUBTYPE_ARM_V7K.
For these two cpusubtypes they should default to a cortex-a7 CPU
to give proper disassembly without a -mcpu= flag.
rdar://27431703
llvm-svn: 292993
The sequence like this:
v_cmpx_le_f32_e32 vcc, 0, v0
s_branch BB0_30
s_cbranch_execnz BB0_30
; BB#29:
exp null off, off, off, off done vm
s_endpgm
BB0_30:
; %endif110
is likely wrong. The s_branch instruction will unconditionally jump
to BB0_30 and the skip block (exp done + endpgm) inserted for
performing the kill instruction will never be executed. This results
in a GPU hang with Star Ruler 2.
The s_branch instruction is added during the "Control Flow Optimizer"
pass which seems to re-organize the basic blocks, and we assume
that SI_KILL_TERMINATOR is always the last instruction inside a
basic block. Thus, after inserting a skip block we just go to the
next BB without looking at the subsequent instructions after the
kill, and the s_branch op is never removed.
Instead, we should remove the unconditional out branches and let
skip the two instructions if the exec mask is non-zero.
This patch fixes the GPU hang and doesn't introduce any regressions
with "make check".
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=99019
Patch by Samuel Pitoiset <samuel.pitoiset@gmail.com>
llvm-svn: 292985
This switches to the workaround that HSA defaults to
for the mesa path.
This should be applied to the 4.0 branch.
Patch by Vedran Miletić <vedran@miletic.net>
llvm-svn: 292982
Summary: In iterative sample pgo where profile is collected from PGOed binary, we may see indirect call targets promoted and inlined in the profile. Before profile annotation, we need to make this happen in order to annotate correctly on IR. This patch explicitly promotes these indirect calls and inlines them before profile annotation.
Reviewers: xur, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29040
llvm-svn: 292979
When demangling a CV-qualified function type with a final reference type
parameter, we would treat the reference type parameter as a r-value ref
accidentally. This would result in the improper decoration of the
function type itself.
Resolves PR31741!
llvm-svn: 292976
Reason: broke ASAN bots with a global buffer overflow.
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/2291
Each test contains 20-30K test cases but takes only several (from 4 to 10)
seconds to complete on average machine. The tests cover the majority of
AMDGPU Gfx7/Gfx8 instructions, including many dark corners, and intended
to quickly find out if something is broken.
llvm-svn: 292974
Summary:
GVNHoist performs all the optimizations that MLSM does to loads, in a
more general way, and in a faster time bound (MLSM is N^3 in most
cases, N^4 in a few edge cases).
This disables the load portion.
Note that the way ld_hoist_st_sink.ll is written makes one think that
the loads should be moved to the while.preheader block, but
1. Neither MLSM nor GVNHoist do it (they both move them to identical places).
2. MLSM couldn't possibly do it anyway, as the while.preheader block
is not the head of the diamond, while.body is. (GVNHoist could do it
if it was legal).
3. At a glance, it's not legal anyway because the in-loop load
conflict with the in-loop store, so the loads must stay in-loop.
I am happy to update the test to use update_test_checks so that
checking is tighter, just was going to do it as a followup.
Note that i can find no particular benefit to the store portion on any
real testcase/benchmark i have (even size-wise). If we really still
want it, i am happy to commit to writing a targeted store sinker, just
taking the code from the MemorySSA port of MergedLoadStoreMotion
(which is N^2 worst case, and N most of the time).
We can do what it does in a much better time bound.
We also should be both hoisting and sinking stores, not just sinking
them, anyway, since whether we should hoist or sink to merge depends
basically on luck of the draw of where the blockers are placed.
Nonetheless, i have left it alone for now.
Reviewers: chandlerc, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29079
llvm-svn: 292971
When demangling a CV-qualified function type with a final parameter with
a reference type, we would insert the CV qualification on the parameter
rather than the function, and in the process adjust the insertion point
by one extra, splitting the type name. This avoids doing so, even
though the attribution is still incorrect.
llvm-svn: 292965
Summary: As per title. This will add the instructiions we are interested in in the worklist.
Reviewers: mehdi_amini, majnemer, andreadb
Differential Revision: https://reviews.llvm.org/D29081
llvm-svn: 292957
Regalloc creates COPY instructions which do not formally use VALU.
That results in v_mov instructions displaced after exec mask modification.
One pass which do it is SIOptimizeExecMasking, but potentially it can be
done by other passes too.
This patch adds a pass immediately after regalloc to add implicit exec
use operand to all VGPR copy instructions.
Differential Revision: https://reviews.llvm.org/D28874
llvm-svn: 292956
In order to follow the pattern of the existing 'slow-misaligned-128store'
option, rename the option 'no-quad-ldst-pairs' to 'slow-paired-128'.
llvm-svn: 292954
Summary:
This is in keeping with LLVM convention. The classes are InstPrinters, but the library is ${target}AsmPrinter.
This patch is in response to bryant pointing out to me that Lanai was the only backend deviating from convention here. Thanks!
Reviewers: jpienaar, bryant
Subscribers: mgorny, jgosnell, llvm-commits
Differential Revision: https://reviews.llvm.org/D29043
llvm-svn: 292953
Also fixes a much worse bug where we emitted the wrong gap size for the
def range uncovered by the test for this issue.
Fixes PR31726.
llvm-svn: 292949
The comment talked about replacing vpmovzxwd+vpslld+vpsrad with vpmovsxwd - which isn't valid as we're sign extending a <8 x i1> bool vector not an all/nobits <8 x i16>
llvm-svn: 292948
Summary:
When conditional branches with complex conditions are split into
multiple branches in SelectionDAGBuilder::FindMergedConditions, also
handle inverted conditions. These may sometimes appear without having
been optimized by InstCombine when CodeGenPrepare decides to sink and
duplicate cmp instructions, causing them to have only one use. This
problem can be increased by e.g. GVNHoist hiding more cmps from
InstCombine by combining equivalent cmps from different blocks.
For example codegen X & !(Y | Z) as:
jmp_if_X TmpBB
jmp FBB
TmpBB:
jmp_if_notY Tmp2BB
jmp FBB
Tmp2BB:
jmp_if_notZ TBB
jmp FBB
Reviewers: bogner, MatzeB, qcolombet
Subscribers: llvm-commits, hiraditya, mcrosier, sebpop
Differential Revision: https://reviews.llvm.org/D28380
llvm-svn: 292944
and UNSUPPORTED"
After r292904 llvm-lit fails to emit the test results in the XML format for
Apple's internal buildbots.
rdar://30164800
llvm-svn: 292942
The comment in ISDOpcodes.h for EXTRACT_VECTOR_ELT now explains that the high
bits are undefined if the result is extended.
Review: Hal Finkel
llvm-svn: 292933
a lazy-asserting PoisoningVH.
AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.
This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.
The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.
The rest is straight cleanup.
I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.
Differential Revision: https://reviews.llvm.org/D29006
llvm-svn: 292928
AssertingVH that delays any reported error until the handle is *used*.
This allows data structures to contain handles which become dangling
provided the data structure is cleaned up afterward rather than used for
anything interesting.
The implementation is moderately horrible in part because it works to
leave AssertingVH in place, undisturbed. If at some point there is
consensus that this is simply how AssertingVH should be used, it can be
substantially simplified.
This remains a boring pointer in a non-asserts build as you would
expect. The only place we pay cost is in asserts builds.
I plan to use this as a basis for replacing the asserting VHs that
currently dangle in the new PM until invalidation occurs in both LVI and
SCEV.
Differential Revision: https://reviews.llvm.org/D29061
llvm-svn: 292925
Each test contains 20-30K test cases but takes only several (from 4 to 10)
seconds to complete on average machine. The tests cover the majority of
AMDGPU Gfx7/Gfx8 instructions, including many dark corners, and intended
to quickly find out if something is broken.
llvm-svn: 292922
The test fails when there is a symlink on the path because then the path
returned by current_path will not match the one we have set. Instead of
doing a string match check the unique id of the two files.
llvm-svn: 292916
Added early out for single undef input - we were already supporting (and testing) this in the constant folding code, we just do it quicker now
Drop undef handling from demanded elts code now that we handle it fully in InstCombiner::visitCallInst
llvm-svn: 292913
Summary:
Use the O_CLOEXEC flag only when it is available. Some old systems (e.g.
SLES10) do not support this flag. POSIX explicitly guarantees that this
flag can be checked for using #if, so there is no need for a CMake
check.
In case O_CLOEXEC is not supported, fall back to fcntl(FD_CLOEXEC)
instead.
Reviewers: rnk, rafael, mgorny
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28894
llvm-svn: 292912
Summary:
This adds a cross-platform way of setting the current working directory
analogous to the existing current_path() function used for retrieving
it. The function will be used in lldb.
Reviewers: rafael, silvas, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29035
llvm-svn: 292907
A `lit` condition line is now a comma-separated list of boolean expressions.
Comma-separated expressions act as if each expression were on its own
condition line:
For REQUIRES, if every expression is true then the test will run.
For UNSUPPORTED, if every expression is false then the test will run.
For XFAIL, if every expression is false then the test is expected to succeed.
As a special case "XFAIL: *" expects the test to fail.
Examples:
# Test is expected fail on 64-bit Apple simulators and pass everywhere else
XFAIL: x86_64 && apple && !macosx
# Test is unsupported on Windows and on non-Ubuntu Linux
# and supported everywhere else
UNSUPPORTED: linux && !ubuntu, system-windows
Syntax:
* '&&', '||', '!', '(', ')'. 'true' is true. 'false' is false.
* Each test feature is a true identifier.
* Substrings of the target triple are true identifiers for UNSUPPORTED
and XFAIL, but not for REQUIRES. (This matches the current behavior.)
* All other identifiers are false.
* Identifiers are [-+=._a-zA-Z0-9]+
Differential Revision: https://reviews.llvm.org/D18185
llvm-svn: 292904
Removed data members ReduxWidth and MinVecRegSize + some C++11 stylish
improvements.
Differential Revision: https://reviews.llvm.org/D29010
llvm-svn: 292899
A `lit` condition line is now a comma-separated list of boolean expressions.
Comma-separated expressions act as if each expression were on its own
condition line:
For REQUIRES, if every expression is true then the test will run.
For UNSUPPORTED, if every expression is false then the test will run.
For XFAIL, if every expression is false then the test is expected to succeed.
As a special case "XFAIL: *" expects the test to fail.
Examples:
# Test is expected fail on 64-bit Apple simulators and pass everywhere else
XFAIL: x86_64 && apple && !macosx
# Test is unsupported on Windows and on non-Ubuntu Linux
# and supported everywhere else
UNSUPPORTED: linux && !ubuntu, system-windows
Syntax:
* '&&', '||', '!', '(', ')'. 'true' is true. 'false' is false.
* Each test feature is a true identifier.
* Substrings of the target triple are true identifiers for UNSUPPORTED
and XFAIL, but not for REQUIRES. (This matches the current behavior.)
* All other identifiers are false.
* Identifiers are [-+=._a-zA-Z0-9]+
Differential Revision: https://reviews.llvm.org/D18185
llvm-svn: 292896
With this change dominator tree remains in sync after each step of loop
peeling.
Differential Revision: https://reviews.llvm.org/D29029
llvm-svn: 292895
This refactor allows parallel calls to be made via an arbitrary async call
dispatcher. In particular, this allows ParallelCallGroup to be used with
derived RPC classes that expose custom async RPC call operations.
llvm-svn: 292891
Verifications of dominator tree and loop info are expensive operations
so they are disabled by default. They can be enabled by command line
options -verify-dom-info and -verify-loop-info. These options however
enable checks only in files Dominators.cpp and LoopInfo.cpp. If some
transformation changes dominaror tree and/or loop info, it would be
convenient to place similar checks to the files implementing the
transformation.
This change makes corresponding flags global, so they can be used in
any file to optionally turn verification on.
llvm-svn: 292889
The GeneralShuffle::add() method used to have an assert that made sure that
source elements were at least as big as the destination elements. This was
wrong, since it is actually expected that an EXTRACT_VECTOR_ELT node with a
smaller source element type than the return type gets extended.
Therefore, instead of asserting this, it is just checked and if this is the
case 'false' is returned from the GeneralShuffle::add() method. This case
should be very rare and is not handled further by the backend.
Review: Ulrich Weigand.
llvm-svn: 292888
Summary:
This seemed to be an oversight seeing as DenseMap has these conversions.
This patch does the following:
- Adds a default constructor to the iterators.
- Allows DenseSet::ConstIterators to be copy constructed from DenseSet::Iterators
- Allows mutual comparison between Iterators and ConstIterators.
All of these are available in the DenseMap implementation, so the implementation here is trivial.
Reviewers: dblaikie, dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28999
llvm-svn: 292879
Summary:
This teaches getNode to simplify extracting from Undef. This is similar to what is done for EXTRACT_VECTOR_ELT. It also adds support for extracting from CONCAT_VECTOR when we can reuse one of the inputs to the concat. These seem like simple non-target specific optimizations.
For X86 we currently handle undef in extractSubvector, but not all EXTRACT_SUBVECTOR creations go through there.
Ultimately, my motivation here is to simplify extractSubvector and remove custom lowering for EXTRACT_SUBVECTOR since we don't do anything but handle undef and BUILD_VECTOR optimizations, but those should be DAG combines.
Reviewers: RKSimon, delena
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29000
llvm-svn: 292876
Summary:
There's a comment in XorSlowCase that says "0^0==1" which isn't true. 0 xored with 0 is still 0. So I don't think we need to clear any unused bits here.
Now there is no difference between XorSlowCase and AndSlowCase/OrSlowCase other than the operation being performed
Reviewers: majnemer, MatzeB, chandlerc, bkramer
Reviewed By: MatzeB
Subscribers: chfast, llvm-commits
Differential Revision: https://reviews.llvm.org/D28986
llvm-svn: 292873
A register unit may be allocatable and non-reserved but some of the
register(tuples) built with it are reserved. We still need to calculate
liveness in this case.
Note to out of tree targets: If you start seeing machine verifier errors
with this commit, it probably means that you do not properly mark super
registers of reserved register as reserved. See for example r292836 or
r292870 for example on how to fix that.
rdar://29996737
Differential Revision: https://reviews.llvm.org/D28881
llvm-svn: 292871
When a register like R1 is reserved, X1 should be reserved as well. This
was already done "manually" when 64bit code was enabled, however using
the markSuperRegs() function on the base register is more convenient and
allows to use the checksAllSuperRegsMarked() function even in 32bit mode
to avoid accidental breakage in the future.
This is also necessary to allow https://reviews.llvm.org/D28881
Differential Revision: https://reviews.llvm.org/D29056
llvm-svn: 292870
Running non-LCSSA-preserving LoopSimplify followed by LCSSA on (roughly) the
same loop is incorrect, since LoopSimplify may break LCSSA arbitrarily higher
in the loop nest. Instead, run LCSSA first, and then run LCSSA-preserving
LoopSimplify on the result.
This fixes PR31718.
Differential Revision: https://reviews.llvm.org/D29055
llvm-svn: 292854
Summary: promoteIndirectCall should be a utility function that could be invoked by other optimization passes.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29051
llvm-svn: 292850
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
When calculating kills, a register may be considered live because a part
of it is live, but if there is a use of that (whole) register, the whole
register (and its subregisters) need to be added to the live set.
llvm-svn: 292845
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
then run the old algorithm.
2) Do the right thing directly.
1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
convertFromString, next, convertToInteger, convertFromAPInt,
convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.
I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.
Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).
Differential Revision: https://reviews.llvm.org/D27872
llvm-svn: 292839
in llvm-objdump for Mach-O files add the printing of the
x86_thread_state32_t in the same format as
otool-classic(1) on darwin.
To do this the 32-bit x86 general tread state
needed to be defined in include/llvm/Support/MachO.h .
rdar://30110111
llvm-svn: 292829
Since we're now avoiding operations using narrow scalar integer types,
we have to legalize the integer side of the FP conversions.
This requires teaching the legalizer how to do that.
llvm-svn: 292828
Since r279760, we've been marking as legal operations on narrow integer
types that have wider legal equivalents (for instance, G_ADD s8).
Compared to legalizing these operations, this reduced the amount of
extends/truncates required, but was always a weird legalization decision
made at selection time.
So far, we haven't been able to formalize it in a way that permits the
selector generated from SelectionDAG patterns to be sufficient.
Using a wide instruction (say, s64), when a narrower instruction exists
(s32) would introduce register class incompatibilities (when one narrow
generic instruction is selected to the wider variant, but another is
selected to the narrower variant).
It's also impractical to limit which narrow operations are matched for
which instruction, as restricting "narrow selection" to ranges of types
clashes with potentially incompatible instruction predicates.
Concerns were also raised regarding MIPS64's sign-extended register
assumptions, as well as wrapping behavior.
See discussions in https://reviews.llvm.org/D26878.
Instead, legalize the operations.
Should we ever revert to selecting these narrow operations, we should
try to represent this more accurately: for instance, by separating
a "concrete" type on operations, and an "underlying" type on vregs, we
could move the "this narrow-looking op is really legal" decision to the
legalizer, and let the selector use the "underlying" vreg type only,
which would be guaranteed to map to a register class.
In any case, we eventually should mitigate:
- the performance impact by selecting no-op extract/truncates to COPYs
(which we currently do), and the COPYs to register reuses (which we
don't do yet).
- the compile-time impact by optimizing away extract/truncate sequences
in the legalizer.
llvm-svn: 292827
This is a series of patches to enable adding of machine sched
models for ARM processors easier and compact. They define new
sched-readwrites for groups of ARM instructions. This has been
missing so far, and as a consequence, machine scheduler models
for individual sub-targets have tended to be larger than they
needed to be.
The current patch focuses on floating-point instructions.
Reviewers: Diana Picus (rovka), Renato Golin (rengolin)
Differential Revision: https://reviews.llvm.org/D28194
llvm-svn: 292825
Summary:
Add a new load command LC_BUILD_VERSION. It is a generic version of
LC_*_VERSION_MIN load_command used on Apple platforms. Instead of having
a seperate load command for each platform, LC_BUILD_VERSION is recording
platform info as an enum. It also records SDK version, min_os, and tools
that used to build the binary.
rdar://problem/29781291
Reviewers: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29044
llvm-svn: 292824