whether the definition of the template is visible rather than checking whether
the instantiated definition happens to be in an imported module.
llvm-svn: 208150
Ideally, importing Foo.a from Foo.b would "do the right thing", but
until it does, this patch makes it an error rather than allow it to
silently be ignored.
llvm-svn: 207948
Having various possible states of initialization following construction doesn't
add value here.
Also remove the unused size_reserve parameter.
llvm-svn: 207897
The Preprocessor::Initialize() function already offers a clear interface to
achieve this, further reducing the confusing number of states a newly
constructed preprocessor can have.
llvm-svn: 207825
After this patch clang will ignore -fdwarf2-cfi-asm and -ffno-dwarf2-cfi-asm and
always print assembly that uses cfi directives.
In llvm, MC itself supports cfi since the end of 2010 (support started
in r119972, is reported in the 2.9 release notes).
In binutils the support has been around for much longer. It looks like
support started to be added in May 2003. It is available in 2.15
(31-Aug-2011, 2.14 is from 12-Jun-2003).
llvm-svn: 207602
Fixed by moving ProcessWarningOptions from Frontend into Basic. All of
the dependencies for ProcessWarningOptions were already in Basic, so
this was a small change.
llvm-svn: 207549
This patch checks whether the diagnostic options that could lead to
errors (principally -Werror) are consistent between when a module was
built and when it is loaded. If there are new -Werror flags, then the
module is rebuilt. In order to canonicalize the options we do this
check at the level of the constructed DiagnosticsEngine, which contains
the final set of diag to diagnostic level mappings. Currently we only
rebuild with the new diagnostic options, but we intend to refine this in
the future to include the union of the new and old flags, since we know
the old ones did not cause errors. System modules are only rebuilt when
-Wsystem-headers is enabled.
One oddity is that unlike checking language options, we don’t perform
this diagnostic option checking when loading from a precompiled header.
The reason for this is that the compiler cannot rebuild the PCH, so
anything that requires it to be rebuilt effectively leaks into the build
system. And in this case, that would mean the build system
understanding the complex relationship between diagnostic options and
the underlying diagnostic mappings, which is unreasonable. Skipping the
check is safe, because these options do not affect the generated AST.
You simply won’t get new build errors due to changed -Werror options
automatically, which is also true for non-module cases.
llvm-svn: 207477
We don't need the ASTContext for the diagnostics, only the language
options, which we can get from the compiler invocation. It worries me
how many categorically different states the ASTUnit class can be in
depending on how it is being constructed/used.
llvm-svn: 206909
Summary:
This allows callers of Diags.Report() to append a value to the name of
the flag associated with the diagnostic. This is useful in cases like
the -Rpass flag, where we want the diagnostic to show the name of the
pass that matched the pattern. Instead of showing "... [-Rpass]", this
allows us to show "... [-Rpass=passname]".
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://reviews.llvm.org/D3441
llvm-svn: 206826
Unless they are in submodules that aren't available anyway, due to
requirements not being met. Also, mark children as unavailable when the
parent is.
llvm-svn: 206664
This paves the way to making OnDiskHashTable work with hashes that are
not 32 bits wide and to making OnDiskHashTable work very large hash
tables. The LLVM change to use these types is upcoming.
llvm-svn: 206640
This reverts commit r206413.
This was proposed before, but it's not clear if this is really a good
idea:
http://reviews.llvm.org/D3034
llvm-svn: 206415
Summary:
This patch adds a new flag -Rpass=. The flag indicates the name
of the optimization pass that should emit remarks stating when it
made a transformation to the code.
This implements the design I proposed in:
https://docs.google.com/document/d/1FYUatSjZZO-zmFBxjOiuOzAy9mhHA8hqdvklZv68WuQ/edit?usp=sharing
Other changes:
- Add DiagnosticIDs::isRemark(). Use it in printDiagnosticOptions to
print "-R" instead of "-W" in the diagnostic message.
- In BackendConsumer::OptimizationRemarkHandler, get a SourceLocation
object out of the file name, line and column number. Use that location
in the call to Diags.Report().
- When -Rpass is used without debug info a note is emitted alerting
the user that they need to use -gline-tables-only -gcolumn-info to
get this information.
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3226
llvm-svn: 206401
To differentiate between two modules with the same name, we will
consider the path the module map file that they are defined by* part of
the ‘key’ for looking up the precompiled module (pcm file).
Specifically, this patch renames the precompiled module (pcm) files from
cache-path/<module hash>/Foo.pcm
to
cache-path/<module hash>/Foo-<hash of module map path>.pcm
In addition, I’ve taught the ASTReader to re-resolve the names of
imported modules during module loading so that if the header search
context changes between when a module was originally built and when it
is loaded we can rebuild it if necessary. For example, if module A
imports module B
first time:
clang -I /path/to/A -I /path/to/B ...
second time:
clang -I /path/to/A -I /different/path/to/B ...
will now rebuild A as expected.
* in the case of inferred modules, we use the module map file that
allowed the inference, not the __inferred_module.map file, since the
inferred file path is the same for every inferred module.
llvm-svn: 206201
This adds Clang support for the ARM64 backend. There are definitely
still some rough edges, so please bring up any issues you see with
this patch.
As with the LLVM commit though, we think it'll be more useful for
merging with AArch64 from within the tree.
llvm-svn: 205100
Committed this by accident before it was done last time.
Original message:
Rather than rolling our own functions to write little endian data
to an ostream, we can use the support in llvm's EndianStream.h.
No functional change.
llvm-svn: 205061
Rather than rolling our own functions to write little endian data to
an ostream, we can use the support in llvm's EndianStream.h.
No functional change.
llvm-svn: 205044
This follows the LLVM change to canonicalise the Windows target triple
spellings. Rather than treating each Windows environment as a single entity,
the environments are now modelled properly as an environment. This is a
mechanical change to convert the triple use to reflect that change.
llvm-svn: 204978
Summary:
This allows them to be used without -cc1 the same way as -I and -isystem.
Renamed the options to --system-header-prefix=/--no-system-header-prefix to avoid interference with -isystem and make the intent of the option cleaner.
Reviewers: rsmith
Reviewed By: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3185
llvm-svn: 204775