uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
the output size is greater than the register size. No truncation occurs with
those. Reword warning to make it clearer what's the problem is.
llvm-svn: 169054
working with preprocessed testcases. This causes source locations in
diagnostics to point at the spelling location instead of the presumed location,
while still keeping the semantic effects of the line directives (entering and
leaving system-header mode, primarily).
llvm-svn: 168004
The 'a', 'c', and 'd' constraints on i386 mean a 32-bit register. We cannot
place a 64-bit value into the 32-bit register. Error out instead of causing the
compiler to spew general badness.
<rdar://problem/12415959>
llvm-svn: 167717
- New options '-mrtm'/'-mno-rtm' are added to enable/disable RTM feature
- Builtin macro '__RTM__' is defined if RTM feature is enabled
- RTM intrinsic header is added and introduces 3 new intrinsics, namely
'_xbegin', '_xend', and '_xabort'.
- 3 new builtins are added to keep compatible with gcc, namely
'__builtin_ia32_xbegin', '__builtin_ia32_xend', and '__builtin_ia32_xabort'.
- Test cases for pre-defined macro and new intrinsic codegen are added.
llvm-svn: 167665
Haiku does not support this (yet). Leaving it set to true leads to
configure scripts detecting __thread being available and Clang emitting
code for it, resulting in binaries the runtime_loader will refuse to
load.
Patch by Jonathan Schleifer!
llvm-svn: 167576
- The whole {File,Source}Manager is built around wanting to pre-determine the
size of files, so we can't fit this in naturally. Instead, we handle it like
we do STDIN, where we just replace the main file contents upfront.
llvm-svn: 167419
ELF subtarget.
The existing description string is moved from PPC64TargetInfo to its
DarwinTargetInfo subclass, to avoid any changes to the Darwin ABI.
PPC64TargetInfo now has two possible description strings: one for FreeBSD,
which requires 8-byte alignment, and a default string that requires
16-byte alignment.
I've added a test for PPC64 Linux to verify the 16-byte alignment. If
somebody wants to add a separate test for FreeBSD, that would be great.
Note that there is a companion patch to update the alignment information
in LLVM, which I am committing now as well.
llvm-svn: 166927
This code checks the ASM string to see if the output size is able to fit within
the variable specified as the output. For instance, scalar-to-vector conversions
may not really work. It's on by default, but can be turned off with a flag if
you think you know what you're doing.
This is placed under a flag ('-Wasm-operand-widths') and flag group ('-Wasm').
<rdar://problem/12284092>
llvm-svn: 166737
the various stakeholders bump up the reference count. In particular,
the diagnostics engine now keeps the DiagnosticOptions object alive.
llvm-svn: 166508
macro expansion ranges, make sure to check all the FileID
entries that are contained in the spelling range of the
expansion for the macro argument.
Fixes rdar://12537982
llvm-svn: 166359
Because PNaCl bitcode must be target-independent, it uses some
different bitcode representations from other targets (e.g. byval and
sret for structures). This means that without additional type
information, it cannot meet some native ABI requirements for some
targets (e.g. passing structures containing unions by value on
x86-64). To allow generation of code which uses the correct native
ABIs, we also support triples such as x86_64-nacl, which uses
target-dependent IR (as opposed to le32-nacl, which uses byval and
sret).
To allow interoperation between the two types of code, this patch adds
a calling convention attribute to be used in code compiled with the
target-dependent triple, which will generate code using the le32-style
bitcode. This calling convention does not need to be explicitly
supported in the backend because it determines bitcode representation
rather than native conventions (the backend just needs to undersand
how to handle byval and sret for the Native Client OS).
This patch implements __attribute__((pnaclcall)) to generate calls in
bitcode according to the le32 bitcode conventions, an attribute which
is accepted by any Native Client target, but issues a warning
otherwise.
llvm-svn: 166065
description. Previously, one could emulate this behavior by placing
the header in an always-unavailable submodule, but Argyrios guilted me
into expressing this idea properly.
llvm-svn: 165921
AAPCS ABI Section 7.1.4 [1] specifies that va_list
should be defined as struct __va_list { void *__ap;};
And in C++, it is defined in namespace std.
[1] http://infocenter.arm.com/help/topic
/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
Patch by Weiming Zhao.
llvm-svn: 165609
diagnostic count.
If a DiagnosticConsumer sub-class overwrites IncludeInDiagnosticCounts,
this should change diagnostic counts. However, it currently also
influences Diag.ErrorOccurred, which in turn influences the behavior of
parsing and semantic analysis (in a way that can make it crash).
llvm-svn: 164824
Summary: Passes all tests (+ the new one with code completion), but needs a thorough review in part related to modules.
Reviewers: doug.gregor
Reviewed By: alexfh
CC: cfe-commits, rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D41
llvm-svn: 164610
Most of the code guarded with ANDROIDEABI are not
ARM-specific, and having no relation with arm-eabi.
Thus, it will be more natural to call this
environment "Android" instead of "ANDROIDEABI".
Note: We are not using ANDROID because several projects
are using "-DANDROID" as the conditional compilation
flag.
llvm-svn: 163088
to define all macros for MIPS targets. Remove redundant virtual function
getArchDefines(). Two virtual functions for this task are really too much.
llvm-svn: 162853
Instead of adding it to each individual subclass in
Targets.cpp, simply check the appropriate target
values.
Where before it was only on x86_64 and ppc64, it's now
also defined on mips64 and nvptx64.
Also add a bunch of negative tests to ensure it is *not*
defined on any other architectures while we're here.
llvm-svn: 161685
Clear the FileManager's stat cache in between running
translation units, as the stat cache loaded from a pch
is only valid for one compiler invocation.
llvm-svn: 161047
AVX). Currently, if no aligned attribute is specified the alignment of a vector is
inferred from its size. Thus, very large vectors will be over-aligned with no
benefit. Target owners should set this target max.
llvm-svn: 160209
diagnostics implemented -- see testcases.
I created a new TableGen file for comment diagnostics,
DiagnosticCommentKinds.td, because comment diagnostics don't logically
fit into AST diagnostics file. But I don't feel strongly about it.
This also implements support for self-closing HTML tags in comment
lexer and parser (for example, <br />).
In order to issue precise diagnostics CommentSema needs to know the
declaration the comment is attached to. There is no easy way to find a decl by
comment, so we match comments and decls in lockstep: after parsing one
declgroup we check if we have any new, not yet attached comments. If we do --
then we do the usual comment-finding process.
It is interesting that this automatically handles trailing comments.
We pick up not only comments that precede the declaration, but also
comments that *follow* the declaration -- thanks to the lookahead in
the lexer: after parsing the declgroup we've consumed the semicolon
and looked ahead through comments.
Added -Wdocumentation-html flag for semantic HTML errors to allow the user to
disable only HTML warnings (but not HTML parse errors, which we emit as
warnings in -Wdocumentation).
llvm-svn: 160078
as "volatile", meaning there's a high enough chance that they may
change while we are trying to use them.
This flag is only enabled by libclang.
Currently "volatile" source files will be stat'ed immediately
before opening them, because the file size stat info
may not be accurate since when we got it (e.g. from the PCH).
This avoids crashes when trying to reference mmap'ed memory
from a file whose size is not what we expect.
Note that there's still a window for a racing issue to occur
but the window for it should be way smaller than before.
We can consider later on to avoid mmap completely on such files.
rdar://11612916
llvm-svn: 160074
Previously we'd halt at the fatal error as expected, but not actually emit
any -verify-related diagnostics. This lets us catch cases that emit a
/different/ fatal error from the one we expected.
This is implemented by adding a "force emit" mode to DiagnosticBuilder, which
will cause diagnostics to immediately be emitted regardless of current
suppression. Needless to say this should probably be used /very/ sparingly.
Patch by Andy Gibbs! Tests for all of Andy's -verify patches coming soon.
llvm-svn: 160053
Implement UniqueFileContainer::erase(), camelCase, add comment on future optimizations of the cache versus de-optimizations of invalidations.
llvm-svn: 159997
is selected. This will allow more flexibility when converting diagnostics to
use template type diffing.
Also updated the internal manual and test cases for correctly keeping the bold
attribute and for tree printing.
llvm-svn: 159463
add interface for removing a FileEntry from the cache.
Forces a re-read the contents from disk, e.g. because a tool (like cling) wants to pick up a modified file.
llvm-svn: 159256
comparison between two templated types when they both appear in a diagnostic.
Type elision will remove indentical template arguments, which can be disabled
with -fno-elide-type. Cyan highlighting is applied to the differing types.
For more formatting, -fdiagnostic-show-template-tree will output the template
type as an indented text tree, with differences appearing inline. Template
tree works with or without type elision.
llvm-svn: 159216
express library-level dependencies within Clang.
This is no more verbose really, and plays nicer with the rest of the
CMake facilities. It should also have no change in functionality.
llvm-svn: 158888
places. I've turned this off for the GNU runtimes --- I don't know if
they support weak class import, but it's easy enough for them to opt in.
Also tweak a comment per review by Jordan.
llvm-svn: 158860
target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
r158085 added some logic to track predefined declarations. The main reason we
had predefined declarations in the input was because the __builtin_va_list
declarations were injected into the preprocessor input. As of r158592 we
explicitly build the __builtin_va_list declarations. Therefore the predefined
decl tracking is no longer needed.
llvm-svn: 158732
This functionality is based on what is done on ARM, and enables selecting PPC CPUs
in a way compatible with gcc's driver. Also, mirroring gcc (and what is done on x86),
-mcpu=native support was added. This uses the host cpu detection from LLVM
(which will also soon be updated by refactoring code currently in backend).
In order for this to work, the target needs a list of valid CPUs -- we now accept all CPUs accepted by LLVM.
A few preprocessor defines for common CPU types have been added.
llvm-svn: 158334
In standard C since C89, a 'translation-unit' is syntactically defined to have
at least one "external-declaration", which is either a decl or a function
definition. In Clang the latter gives us a declaration as well.
The tricky bit about this warning is that our predefines can contain external
declarations (__builtin_va_list and the 128-bit integer types). Therefore our
AST parser now makes sure we have at least one declaration that doesn't come
from the predefines buffer.
Also, remove bogus warning about empty source files. This doesn't catch source
files that only contain comments, and never fired anyway because of our
predefines.
PR12665 and <rdar://problem/9165548>
llvm-svn: 158085
Because in CUDA types do not have associated address spaces,
globals are declared in their "native" address space, and accessed
by bitcasting the pointer to address space 0. This relies on address
space 0 being a unified address space.
llvm-svn: 157167
that bridging between the two is free. Saves ~4k of code size,
although I don't see any measurable performance difference
(unfortunately).
llvm-svn: 156187
validate that we didn't override the contents of any of such files.
If this is detected, emit a diagnostic error and recover gracefully
by using the contents of the original file that the PCH was built from.
Part of rdar://11305263
llvm-svn: 156107
r155047. See the LLVM log for the primary motivation:
http://llvm.org/viewvc/llvm-project?rev=155047&view=rev
Primary commit r154828:
- Several issues were raised in review, and fixed in subsequent
commits.
- Follow-up commits also reverted, and which should be folded into the
original before reposting:
- r154837: Re-add the 'undef BUILTIN' thing to fix the build.
- r154928: Fix build warnings, re-add (and correct) header and
license
- r154937: Typo fix.
Please resubmit this patch with the relevant LLVM resubmission.
llvm-svn: 155048
This method is very hot, it is called when emitting diagnostics, in -E mode
and for many #pragma handlers. It scans through the whole source file to
count newlines, records and caches them in a vector.
The speedup from vectorization isn't very large, as we fall back to bytewise
scanning when we hit a newline. There might be a way to avoid leaving the sse
loop but everything I tried didn't work out because a call to push_back
clobbers xmm registers.
About 2% speedup on average on "clang -E > /dev/null" of all .cpp files in
clang's lib/Sema.
llvm-svn: 154204
uses Neon instructions for single-precision FP.
-mfpmath=neon is analogous to passing llc -mattr=+neonfp.
-mfpmath=[vfp|vfp2|vfp3|vfp4] is analogous to passing llc -mattr=-neonfp.
rdar://11108618
llvm-svn: 154046
- This is much more important than it appears at first glance...
The intended design of DiagnosticBuilder was that it never escape and that all
its members would get lowered to registers by the compiler. By fixing Emit here,
the compiler can completely eliminate the DiagnosticBuilder object and never
need to push those registers back into it.
Unfortunately, Sema has broken DiagnosticBuilder in other ways (by introducing
SemaDiagnosticBuilder), so we don't get the fill impact of this, but it is still
good for 30k reduction in code size. I'll work on fixing the
SemaDiagnosticBuilder problems next.
llvm-svn: 152669
by ~%.3/~100k in my build -- simply by eliminating the horrible code bloat coming
from the .clear() of the SmallVector<FixItHint>, which does a std::~string, etc.
- My understanding is we don't ever emit arbitrary numbers of fixits, so I just
moved us to using a statically sized array like we do for arguments and
ranges.
llvm-svn: 152639
first codepoint! Also, don't reject empty raw string literals for spurious
"encoding" issues. Also, don't rely on undefined behavior in ConvertUTF.c.
llvm-svn: 152344
If you're using git-svn, the clang and llvm repository will typically
map to a different revision.
Before we had:
clang version 3.1 (trunk 152167 trunk 152162)
After this change:
clang version 3.1 (trunk 152167) (llvm/trunk 152162)
So it's self-descriptive with an extra parens group. Which is more
compatible with version string parsers is probably debatable, but this
style was requested.
llvm-svn: 152183
the new Objective-C NSArray/NSDictionary/NSNumber literal syntax.
This introduces a new library, libEdit, which provides a new way to support
migration of code that improves on the original ARC migrator. We now believe
that most of its functionality can be refactored into the existing libraries,
and thus this new library may shortly disappear.
llvm-svn: 152141
ptrdiff_t on PPC32 on Linux, etc. should be int not long.
This does not matter for C, but it does matter for C++ because of
name mangling.
The preprocessor test has been changed accordingly.
llvm-svn: 151935
Unconditionally define __C99FEATURES__ when using C++ on Solaris. This is a
(hopefully temporary) work around for libc++ exposing C99-but-not-C++98
features in C++98 mode.
llvm-svn: 151889
IndentifierTable::get() and into IdentifierTable's constructor.
This gets a 0.7% reducing on lexing time for Cocoa.h, and
about the same for PCH generation.
llvm-svn: 151854
from the one stored in the PCH/AST, while trying to load a SLocEntry.
We verify that all files of the PCH did not change before loading it but this is not enough because:
- The AST may have been 1) kept around, 2) to do queries on it.
- We may have 1) verified the PCH and 2) started parsing.
Between 1) and 2) files may change and we are going to have crashes because the rest of clang
cannot deal with the ASTReader failing to read a SLocEntry.
Handle this by recovering gracefully in such a case, by initializing the SLocEntry
with the info from the PCH/AST as well as reporting failure by the ASTReader.
rdar://10888929
llvm-svn: 151004
This option was added in r129614 and doesn't have any use case that I'm aware
of. It's possible that external tools are using these names - and if that's
the case we can certainly reassess the functionality, but for now it lets us
shave out a few unneeded bits from clang.
Move the "StaticDiagNameIndex" table into the only remaining consumer, diagtool.
This removes the actual diagnostic name strings from clang entirely.
Reviewed by Chris Lattner & Ted Kremenek.
llvm-svn: 150612
This seems to negatively affect compile time onsome ObjC tests
(which use a lot of partial diagnostics I assume). I have to come
up with a way to keep them inline without including Diagnostic.h
everywhere. Now adding a new diagnostic requires a full rebuild
of e.g. the static analyzer which doesn't even use those diagnostics.
This reverts commit 6496bd10dc3a6d5e3266348f08b6e35f8184bc99.
This reverts commit 7af19b817ba964ac560b50c1ed6183235f699789.
This reverts commit fdd15602a42bbe26185978ef1e17019f6d969aa7.
This reverts commit 00bd44d5677783527d7517c1ffe45e4d75a0f56f.
This reverts commit ef9b60ffed980864a8db26ad30344be429e58ff5.
llvm-svn: 150006
MAP_ERROR to be remapped to MAP_WARNING. These new APIs are being added to
allow the diagnostic mapping's "no Werror" bit to be set, and potentially
downgrade anything already mapped to be a warning.
llvm-svn: 150001
Let ASTContext allocate the storage in its BumpPtrAllocator.
This will help us remove ASTContext's depedency on PartialDiagnostic.h soon.
llvm-svn: 149780
into using non-absolute system includes (<foo>)...
... and introduce another hack that is simultaneously more heineous
and more effective. We whitelist Clang-supplied headers that augment
or override system headers (such as float.h, stdarg.h, and
tgmath.h). For these headers, Clang does not provide a module
mapping. Instead, a system-supplied module map can refer to these
headers in a system module, and Clang will look both in its own
include directory and wherever the system-supplied module map
suggests, then adds either or both headers. The end result is that
Clang-supplied headers get merged into the system-supplied module for
the C standard library.
As a drive-by, fix up a few dependencies in the _Builtin_instrinsics
module.
llvm-svn: 149611
each of the targets. Use this for module requirements, so that we can
pin the availability of certain modules to certain target features,
e.g., provide a module for xmmintrin.h only when SSE support is
available.
Use these feature names to provide a nearly-complete module map for
Clang's built-in headers. Only mm_alloc.h and unwind.h are missing,
and those two are fairly specialized at the moment. Finishes
<rdar://problem/10710060>.
llvm-svn: 149227
like Darwin that don't support it. We should also complain about
invalid -fvisibility=protected, but that information doesn't seem
to exist at the most appropriate time, so I've left a FIXME behind.
llvm-svn: 149186
single attribute ("system") that allows us to mark a module as being a
"system" module. Each of the headers that makes up a system module is
considered to be a system header, so that we (for example) suppress
warnings there.
If a module is being inferred for a framework, and that framework
directory is within a system frameworks directory, infer it as a
system framework.
llvm-svn: 149143
-Wno-everything remap all warnings to ignored.
We can now use "-Wno-everything -W<warning>" to ignore all warnings except
specific ones.
llvm-svn: 149121
ARM supports clz and ctz directly and both operations have well-defined
results for zero. There is no disadvantage in performance to using the
defined-at-zero versions of llvm.ctlz/cttz intrinsics. We're running into
ARM-specific code written with the assumption that __builtin_clz(0) == 32,
even though that value is technically undefined. The code is failing now
because of llvm optimizations that are taking advantage of the undef
behavior (specifically svn r147255). There's nothing wrong with that
optimization on x86 where any incorrect assumptions about __builtin_clz(0)
will quickly be exposed. For ARM, though, optimizations based on that undef
behavior are likely to cause subtle bugs. Other targets with defined-at-zero
clz/ctz support may want to override the default behavior as well.
llvm-svn: 149086
Patch from Jyotsna Verma:
I have made the changes to remove assertions in the Hexagon backend
specific clang driver. Instead of asserting on invalid arch name, it has
been modified to use the default value.
I have changed the implementation of the CPU flag validation for the
Hexagon backend. Earlier, the clang driver performed the check and
asserted on invalid inputs. In the new implementation, the driver passes
the last CPU flag (or sets to "v4" if not specified) to the compiler (and
also to the assembler and linker which perform their own check) instead of
asserting on incorrect values. This patch changes the setCPU function for
the Hexagon backend in clang/lib/Basic/Targets.cpp which causes the
compiler to error out on incorrect CPU flag values.
llvm-svn: 148139
- Support gcc-compatible vfpv3 name in addition to vfp3.
- Support vfpv3-d16.
- Disable neon feature for -mfpu=vfp* (yes, we were emitting Neon instructions
for those!).
llvm-svn: 147943
in the module map. This provides a bit more predictability for the
user, as well as eliminating the need to sort the submodules when
serializing them.
llvm-svn: 147564
modules. This leaves us without an explicit syntax for importing
modules in C/C++, because such a syntax needs to be discussed
first. In Objective-C/Objective-C++, the @import syntax is used to
import modules.
Note that, under -fmodules, C/C++ programs can import modules via the
#include mechanism when a module map is in place for that header. This
allows us to work with modules in C/C++ without committing to a syntax.
llvm-svn: 147467
features needed for a particular module to be available. This allows
mixed-language modules, where certain headers only work under some
language variants (e.g., in C++, std.tuple might only be available in
C++11 mode).
llvm-svn: 147387
This is equal to alignof(std::max_align_t) on the platform and equal to the
alignment provided by malloc. (Platform owners please double-check your
platform's value.)
llvm-svn: 146762
fails within a call to a constexpr function. Add -fconstexpr-backtrace-limit
argument to driver and frontend, to control the maximum number of notes so
produced (default 10). Fix APValue printing to be able to pretty-print all
APValue types, and move the testing for this functionality from a unittest to
a -verify test now that it's visible in clang's output.
llvm-svn: 146749
diagnostics. Conflating them was highly confusing and makes it harder to
establish a firm layering separation between these two libraries.
llvm-svn: 146207
. move compiler-rt to a separate directory so the -L argument only includes compiler-rt (thanks joerg)
. build all clang subdirs
. switches the Minix platform to ELF
. normalizes toolchain invocation
Patch by Ben Gras.
llvm-svn: 146206
a modifier for a header declarartion, e.g.,
umbrella header "headername"
Collapse the umbrella-handling code in the parser into the
header-handling code, so we don't duplicate the header-search logic.
llvm-svn: 146159
header to also support umbrella directories. The umbrella directory
for an umbrella header is the directory in which the umbrella header
resides.
No functionality change yet, but it's coming.
llvm-svn: 146158
to re-export anything that it imports. This opt-in feature makes a
module behave more like a header, because it can be used to re-export
the transitive closure of a (sub)module's dependencies.
llvm-svn: 145811
library, since modules cut across all of the libraries. Rename
serialization::Module to serialization::ModuleFile to side-step the
annoying naming conflict. Prune a bunch of ModuleMap.h includes that
are no longer needed (most files only needed the Module type).
llvm-svn: 145538
* Enabling sse enables mmx.
* Disabling (-mno-mmx) mmx, doesn't disable sse (we got this right already).
* The order in not important. -msse -mno-mmx is the same as -mno-mmx -msse.
llvm-svn: 145194
Original behaviour of defining wchar_t as signed int has been kept for apcs-gnu as I don't have any spec for this to validate against.
llvm-svn: 145102
file in the source manager. This allows us to properly create and use
modules described by module map files without umbrella headers (or
with incompletely umbrella headers). More generally, we can actually
build a PCH file that makes use of file -> buffer remappings, which
could be useful in libclang in the future.
llvm-svn: 144830
In certain cases ASTReader would call the normal DiagnosticsEngine API to initialize
the state of diagnostic pragmas but DiagnosticsEngine would try to compare source locations
leading to crash because the main FileID was not yet initialized.
Yet another case of the ASTReader trying to use the normal APIs and inadvertently breaking
invariants. Fix this by having the ASTReader set up the internal state directly.
llvm-svn: 144153
AST file more lazy, so that we don't eagerly load that information for
all known identifiers each time a new AST file is loaded. The eager
reloading made some sense in the context of precompiled headers, since
very few identifiers were defined before PCH load time. With modules,
however, a huge amount of code can get parsed before we see an
@import, so laziness becomes important here.
The approach taken to make this information lazy is fairly simple:
when we load a new AST file, we mark all of the existing identifiers
as being out-of-date. Whenever we want to access information that may
come from an AST (e.g., whether the identifier has a macro definition,
or what top-level declarations have that name), we check the
out-of-date bit and, if it's set, ask the AST reader to update the
IdentifierInfo from the AST files. The update is a merge, and we now
take care to merge declarations before/after imports with declarations
from multiple imports.
The results of this optimization are fairly dramatic. On a small
application that brings in 14 non-trivial modules, this takes modules
from being > 3x slower than a "perfect" PCH file down to 30% slower
for a full rebuild. A partial rebuild (where the PCH file or modules
can be re-used) is down to 7% slower. Making the PCH file just a
little imperfect (e.g., adding two smallish modules used by a bunch of
.m files that aren't in the PCH file) tips the scales in favor of the
modules approach, with 24% faster partial rebuilds.
This is just a first step; the lazy scheme could possibly be improved
by adding versioning, so we don't search into modules we already
searched. Moreover, we'll need similar lazy schemes for all of the
other lookup data structures, such as DeclContexts.
llvm-svn: 143100
This only has an effect with fairly new binutils (2.21.51 or later). Other ELF targets probably want this as well, but on BSDs binutils is usually old so it doesn't matter.
llvm-svn: 142076
This changes clang to match GCC's behavior for __extension__, which temporarily
disables the -pedantic flag. Warnings that are enabled without -pedantic
are not affected. Besides the general goodness of matching GCC's precedent,
my motivation for this is that macros in the arm_neon.h header need to use
__extension__ to avoid pedantic complaints about their use of statement
expressions, yet we still want to warn about incompatible pointer arguments
for those macros.
llvm-svn: 141804
the command line options (at least according to GCC's documentation). GCC 4.2
didn't appear to actually do this, but it seems like that has been fixed in
later release, so we will follow the docs.
llvm-svn: 141119
- This fixes a host of obscure bugs with regards to how warning mapping options composed with one another, and I believe makes the code substantially easier to read and reason about.
llvm-svn: 140770
- No actual functionality change for now, we still also use the diag::Mapping::{MAP_WARNING_NO_ERROR,MAP_ERROR_NO_FATAL,MAP_WARNING_SHOW_IN_SYSTEM_HEADER} for a little while longer.
llvm-svn: 140768
- The TextDiagnosticPrinter code is still fragile as it is just "reverse engineering" what the diagnostic engine is doing. Not my current priority to fix though.
llvm-svn: 140752
DiagnosticsEngine::setDiagnosticGroup{ErrorAsFatal,WarningAsError} methods which
more accurately model the correct API -- no internal change to the diagnostics
engine yet though.
- Also, stop honoring -Werror=everything (etc.) as a valid (but oddly behaved) option.
llvm-svn: 140747
predefines based on the output of GCC as well as the CPU predefines.
Invert tests for __AVX__, Clang's AVX feature is hard coded off still.
Switch Atom from 'SSE3' to 'SSSE3'. This matches GCC's behavior, Intel's
documentation, and ICC's documentation (such as I could dig up).
Switch Athlon and Geode to enable 3dnowa rather than just 3dnow and
nothing (resp.).
llvm-svn: 140692
fallthrough now that we're working with a switch. Also remove a dubious
"feature" regarding k6 processors and 3dnow and leave a fixme... Not
that anyone is likely to care about correct tuning for k6 processors
with and w/o 3dnow...
llvm-svn: 140687
selected CPU model to the enumeration. This parses the string
representation once using a StringSwitch on SetCPU. It returns an error
for strings which are not recognized (yay!). Finally it replaces
ridiculous if-chains with switches that cover all enumerators.
The last change required adding several missing entries to the features
function. These were obvious on inspection. Yay for a pattern that gives
warnings when we miss one.
No new test cases yet, as I want to get the 64-bit errors working first.
I'll then start fleshing out the testing more. Currently I'm primarily
testing on Linux, but I'm hoping check whether there are interesting
differences on darwin before long...
llvm-svn: 140685
it an error if a CPU is provided for a target that doesn't implement
logic handling CPU settings, to match the ABI settings. It also removes
the CPU parameter from the getDefaultFeatures method. This parameter was
always filled in with the same value as setCPU was called with, and at
this point every single target implementation that referenced the CPU
within this function has needed to store the CPU via setCPU anyways in
order to implement other interface points.
llvm-svn: 140683
is *very* much a WIP that I'll be refining over the next several
commits, but I need to get this checkpoint in place for sanity.
This also adds a much more comprehensive test for architecture macros,
which is roughly generated by inspecting the behavior of a trunk build
of GCC. It still requires some massaging, but eventually I'll even check
in the script that generates these so that others can use it to append
more tests for more architectures, etc.
Next up is a bunch of simplification of the Targets.cpp code, followed
by a lot more test cases once we can reject invalid architectures.
llvm-svn: 140673
of a ContentCache, since multiple FileIDs can have the same ContentCache
but the expanded macro arguments locations will be different.
llvm-svn: 140521
change __builtin_va_list to from a structure to int[4] (same alignment
and size, but with a simpler representation). Patch by David Meyer!
llvm-svn: 140144
check whether the requested location points inside the precompiled preamble,
in which case the returned source location will be a "loaded" one.
llvm-svn: 140060
target triple to separate modules built under different
conditions. The hash is used to create a subdirectory in the module
cache path where other invocations of the compiler (with the same
version, language options, etc.) can find the precompiled modules.
llvm-svn: 139662
language options. Use that .def file to declare the LangOptions class
and initialize all of its members, eliminating a source of annoying
initialization bugs.
AST serialization changes are next up.
llvm-svn: 139605
but there is a corresponding umbrella header in a framework, build the
module on-the-fly so it can be immediately loaded at the import
statement. This is very much proof-of-concept code, with details to be
fleshed out over time.
llvm-svn: 139558
and language-specific initialization. Use this to allow ASTUnit to
create a preprocessor object *before* loading the AST file. No actual
functionality change.
llvm-svn: 138983
include guards don't show up as macro definitions in every translation
unit that imports a module. Macro definitions can, however, be
exported with the intentionally-ugly #__export_macro__
directive. Implement this feature by not even bothering to serialize
non-exported macros to a module, because clients of that module need
not (should not) know that these macros even exist.
llvm-svn: 138943
- wrong alignment for double (it was 4, but 8 is desired),
- added checks for _REENTRANT define,
- fixed the issue that defines were not tested (because the check for inside #ifdef).
llvm-svn: 138775
to increased calls to SourceManager::getFileID. (rdar://9992664)
Use a slightly different approach that is more efficient both in terms of speed
(no extra getFileID calls) and in SLocEntries reduction.
Comparing pre-r138129 and this patch we get:
For compiling SemaExpr.cpp reduction of SLocEntries by 26%.
For the boost enum library:
-SLocEntries -34% (note that this was -5% for r138129)
-Memory consumption -50%
-PCH size -31%
Reduced SLocEntries also benefit the hot function SourceManager::getFileID,
evident by the reduced "FileID scans".
llvm-svn: 138380
Currently getMacroArgExpandedLocation is very inefficient and for the case
of a location pointing at the main file it will end up checking almost all of
the SLocEntries. Make it faster:
-Use a map of macro argument chunks to their expanded source location. The map
is for a single source file, it's stored in the file's ContentCache and lazily
computed, like the source lines cache.
-In SLocEntry's FileInfo add an 'unsigned NumCreatedFIDs' field that keeps track
of the number of FileIDs (files and macros) that were created during preprocessing
of that particular file SLocEntry. This is useful when computing the macro argument
map in skipping included files while scanning for macro arg FileIDs that lexed from
a specific source file. Due to padding, the new field does not increase the size
of SLocEntry.
llvm-svn: 138225
Currently this includes -pedantic warnings as well; we'll need to consider whether these should
be included.
This works as expected with -Werror.
Test cases were added to Sema/warn-unused-parameters.c, but they should probably be broken off into
their own test file.
llvm-svn: 137910
If we pass it a source location that points inside a function macro argument,
the returned location will be the macro location in which the argument was expanded.
If a macro argument is used multiple times, the expanded location will
be at the first expansion of the argument.
e.g.
MY_MACRO(foo);
^
Passing a file location pointing at 'foo', will yield a macro location
where 'foo' was expanded into.
Make SourceManager::getLocation call getMacroArgExpandedLocation as well.
llvm-svn: 137794
alignment. This fixes cases where the anonymous bitfield is followed by a
non-bitfield member. E.g.,
struct t4
{
int foo : 1;
long : 0;
char bar;
};
Part of rdar://9859156
llvm-svn: 136858
etc. With this I think essentially all of the SourceManager APIs are
converted. Comments and random other bits of cleanup should be all thats
left.
llvm-svn: 136057
and various other 'expansion' based terms. I've tried to reformat where
appropriate and catch as many references in comments but I'm going to do
several more passes. Also I've tried to expand parameter names to be
more clear where appropriate.
llvm-svn: 136056
FullSourceLoc::getInstantiationLoc to ...::getExpansionLoc. This is part
of the API and documentation update from 'instantiation' as the term for
macros to 'expansion'.
llvm-svn: 135914
source locations from source locations loaded from an AST/PCH file.
Previously, loading an AST/PCH file involved carefully pre-allocating
space at the beginning of the source manager for the source locations
and FileIDs that correspond to the prefix, and then appending the
source locations/FileIDs used for parsing the remaining translation
unit. This design forced us into loading PCH files early, as a prefix,
whic has become a rather significant limitation.
This patch splits the SourceManager space into two parts: for source
location "addresses", the lower values (growing upward) are used to
describe parsed code, while upper values (growing downward) are used
for source locations loaded from AST/PCH files. Similarly, positive
FileIDs are used to describe parsed code while negative FileIDs are
used to file/macro locations loaded from AST/PCH files. As a result,
we can load PCH/AST files even during parsing, making various
improvemnts in the future possible, e.g., teaching #include <foo.h> to
look for and load <foo.h.gch> if it happens to be already available.
This patch was originally written by Sebastian Redl, then brought
forward to the modern age by Jonathan Turner, and finally
polished/finished by me to be committed.
llvm-svn: 135484
specified, 128 avx code is used and we're not sure yet if this the behavior
we want (and if it does, some improvements are needed before relying on it).
llvm-svn: 134939
When two different types has the same text representation in the same
diagnostic message, print an a.k.a. after the type if the a.k.a. gives extra
information about the type.
class versa_string;
typedef versa_string string;
namespace std {template <typename T> class vector;}
using std::vector;
void f(vector<string> v);
namespace std {
class basic_string;
typedef basic_string string;
template <typename T> class vector {};
void g() {
vector<string> v;
f(v);
}
}
Old message:
----------------
test.cc:15:3: error: no matching function for call to 'f'
f(&v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' to 'vector<string>' for 1st argument
void f(vector<string> v);
^
1 error generated.
New message:
---------------
test.cc:15:3: error: no matching function for call to 'f'
f(v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' (aka 'std::vector<std::basic_string>') to
'vector<string>' (aka 'std::vector<versa_string>') for 1st argument
void f(vector<string> v);
^
1 error generated.
llvm-svn: 134904
Note that because we don't usually touch the MMX registers anyway, all -mno-mmx needs to do is tweak the x86-32 calling convention a little for vectors that look like MMX vectors, and prevent the definition of __MMX__.
clang doesn't actually stop the user from using MMX inline asm operands or MMX builtins in -mno-mmx mode; as a QOI issue, it would be nice to diagnose, but I doubt it really matters much.
<rdar://problem/9694837>
llvm-svn: 134770
change.
Previously clang was passing the following feature strings to the ARM backend
when CPU is cortex-a8: +neon,-vfp2,-vfp3
This used to work because -vfp2,-vfp3 had no effect after +neon. Now that the
features are controlled by individual bits (with implied hierarchy), the net
effect is all three features will be turned off.
llvm-svn: 134691
instantiation and improve diagnostics which are stem from macro
arguments to trace the argument itself back through the layers of macro
expansion.
This requires some tricky handling of the source locations, as the
argument appears to be expanded in the opposite direction from the
surrounding macro. This patch provides helper routines that encapsulate
the logic and explain the reasoning behind how we step through macros
during diagnostic printing.
This fixes the rest of the test cases originially in PR9279, and later
split out into PR10214 and PR10215.
There is still some more work we can do here to improve the macro
backtrace, but those will follow as separate patches.
llvm-svn: 134660
When a macro instantiation occurs, reserve a SLocEntry chunk with length the
full length of the macro definition source. Set the spelling location of this chunk
to point to the start of the macro definition and any tokens that are lexed directly
from the macro definition will get a location from this chunk with the appropriate offset.
For any tokens that come from argument expansion, '##' paste operator, etc. have their
instantiation location point at the appropriate place in the instantiated macro definition
(the argument identifier and the '##' token respectively).
This improves macro instantiation diagnostics:
Before:
t.c:5:9: error: invalid operands to binary expression ('struct S' and 'int')
int y = M(/);
^~~~
t.c:5:11: note: instantiated from:
int y = M(/);
^
After:
t.c:5:9: error: invalid operands to binary expression ('struct S' and 'int')
int y = M(/);
^~~~
t.c:3:20: note: instantiated from:
\#define M(op) (foo op 3);
~~~ ^ ~
t.c:5:11: note: instantiated from:
int y = M(/);
^
The memory savings for a candidate boost library that abuses the preprocessor are:
- 32% less SLocEntries (37M -> 25M)
- 30% reduction in PCH file size (900M -> 635M)
- 50% reduction in memory usage for the SLocEntry table (1.6G -> 800M)
llvm-svn: 134587
It would add up relative (decomposed) offsets like in getDecomposedSpellingLocSlowCase, but while
it makes sense to preserve the offset among lexed spelling locations, it doesn't make
sense to add anything to the offset of the instantiation location. The instantiation
location will be the same regardless of the relative offset in the tokens that were
instantiated.
This bug didn't actually affect anything because, currently, in practice we never create macro
locations with relative offset greater than 0.
llvm-svn: 134586
The small number of elements was determined by taking the median
file length in clang+llvm and /usr/include on OS X with xcode installed.
llvm-svn: 134496
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
Related result types apply Cocoa conventions to the type of message
sends and property accesses to Objective-C methods that are known to
always return objects whose type is the same as the type of the
receiving class (or a subclass thereof), such as +alloc and
-init. This tightens up static type safety for Objective-C, so that we
now diagnose mistakes like this:
t.m:4:10: warning: incompatible pointer types initializing 'NSSet *'
with an
expression of type 'NSArray *' [-Wincompatible-pointer-types]
NSSet *array = [[NSArray alloc] init];
^ ~~~~~~~~~~~~~~~~~~~~~~
/System/Library/Frameworks/Foundation.framework/Headers/NSObject.h:72:1:
note:
instance method 'init' is assumed to return an instance of its
receiver
type ('NSArray *')
- (id)init;
^
It also means that we get decent type inference when writing code in
Objective-C++0x:
auto array = [[NSMutableArray alloc] initWithObjects:@"one", @"two",nil];
// ^ now infers NSMutableArray* rather than id
llvm-svn: 132868
Patch by Matthieu Monrocq with tweaks by me to avoid StringRefs in the static
diagnostic data structures, which resulted in a huge global-var-init function.
Depends on llvm commit r132046.
llvm-svn: 132047
during deserialization from a precompiled header, and update all of
its callers to note when this problem occurs and recover (more)
gracefully. Fixes <rdar://problem/9119249>.
llvm-svn: 129839
Make KEYALL a combination of all other flags instead
of its own separate flag. Also rewrite the enum
definitions in hex instead of decimal.
llvm-svn: 129213
Sandeep Patel noticed that the alignment was wrong for Neon vector types,
and this change is partly derived from his patch. For the APCS ABI, however,
additional changes were required: the maximum ABI alignment is 32 bits and
the preferred alignment for i64 and f64 types should be 64 bits.
llvm-svn: 128825
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
add support for the OpenCL __private, __local, __constant and
__global address spaces, as well as the __read_only, _read_write and
__write_only image access specifiers. Patch originally by ARM;
language-specific address space support by myself.
llvm-svn: 127915
Add 'openFile' bool to FileManager::getFile to specify whether we want to have the file opened or not, have it
false by default, and enable it only in HeaderSearch.cpp where the open+fstat optimization matters.
Fixes rdar://9139899.
llvm-svn: 127748
After the open+fstat optimization, files were already opened for FileManager::getBufferForFile() and we closed them after reading them.
The problem was that when -working-directory was passed, the code path that actually reuses & closes the already opened file descriptor
was not followed.
llvm-svn: 127639
should report the original file name for contents of files that were overriden by other files,
otherwise it should report the name of the new file. Default is true.
Also add similar field in PreprocessorOptions and pass similar parameter in ASTUnit::LoadFromCommandLine.
llvm-svn: 127289
Allow remapping a file by specifying another filename whose contents should be loaded if the original
file gets loaded. This allows to override files without having to create & load buffers in advance.
llvm-svn: 127052
conventional categories into Basic and AST. Update the self-init checker
to use this logic; CFRefCountChecker is complicated enough that I didn't
want to touch it.
llvm-svn: 126817