This patch adds a class for processing many recip codegen possibilities.
The TargetRecip class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 238051
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
llvm-svn: 237079
r224330 introduced a bug by misinterpreting the "FeatureVectorUAMem" bit.
The commit log says that change did not affect anything, but that's not correct.
That change allowed SSE instructions to have unaligned mem operands folded into
math ops, and that's not allowed in the default specification for any SSE variant.
The bug is exposed when compiling for an AVX-capable CPU that had this feature
flag but without enabling AVX codegen. Another mistake in r224330 was not adding
the feature flag to all AVX CPUs; the AMD chips were excluded.
This is part of the fix for PR22371 ( http://llvm.org/bugs/show_bug.cgi?id=22371 ).
This feature bit is SSE-specific, so I've renamed it to "FeatureSSEUnalignedMem".
Changed the existing test case for the feature bit to reflect the new name and
renamed the test file itself to better reflect the feature.
Added runs to fold-vex.ll to check for the failing codegen.
Note that the feature bit is not set by default on any CPU because it may require a
configuration register setting to enable the enhanced unaligned behavior.
llvm-svn: 227983
According to AVX specification:
"Most arithmetic and data processing instructions encoded using the VEX prefix and
performing memory accesses have more flexible memory alignment requirements
than instructions that are encoded without the VEX prefix. Specifically,
With the exception of explicitly aligned 16 or 32 byte SIMD load/store instructions,
most VEX-encoded, arithmetic and data processing instructions operate in
a flexible environment regarding memory address alignment, i.e. VEX-encoded
instruction with 32-byte or 16-byte load semantics will support unaligned load
operation by default. Memory arguments for most instructions with VEX prefix
operate normally without causing #GP(0) on any byte-granularity alignment
(unlike Legacy SSE instructions)."
The same for AVX-512.
This change does not affect anything right now, because only the "memop pattern fragment"
depends on FeatureVectorUAMem and it is not used in AVX patterns.
All AVX patterns are based on the "unaligned load" anyway.
llvm-svn: 224330
missing barcelona CPU which that test uncovered, and remove the 32-bit
x86 CPUs which I really wasn't prepared to audit and test thoroughly.
If anyone wants to clean up the 32-bit only x86 CPUs, go for it.
Also, if anyone else wants to try to de-duplicate the AMD CPUs, that'd
be cool, but from the looks of it wouldn't save as much as it did for
the Intel CPUs.
llvm-svn: 223774
Notably, this adds simple micro-architecture names for the Intel CPU
variants, and defines the old 'core'-based names as aliases. GCC has
started to simplify their documented interface to use these names as
well, so it seems like we can start to converge on a consistent pattern.
I'd appreciate Intel double checking the entries that aren't yet
documented widely, especially Atom (Bonnell and Silvermont), Knights
Landing, and Skylake. But this change shouldn't break any existing
users.
Also, ran clang-format to re-format this code and it actually worked
(modulo a tiny bug) so hopefully we can start to stop thinking about
formatting this stuff.
llvm-svn: 223769
Allow unaligned 16-byte memop codegen for btver2. No functional changes for any other subtargets.
Replace the existing supposed small memcpy test with an actual test of a small memcpy.
The previous test wasn't using FileCheck either.
This patch should allow us to close PR21541 ( http://llvm.org/bugs/show_bug.cgi?id=21541 ).
Differential Revision: http://reviews.llvm.org/D6360
llvm-svn: 222925
This patch adds a feature flag to avoid unaligned 32-byte load/store AVX codegen
for Sandy Bridge and Ivy Bridge. There is no functionality change intended for
those chips. Previously, the absence of AVX2 was being used as a proxy to detect
this feature. But that hindered codegen for AVX-enabled AMD chips such as btver2
that do not have the 32-byte unaligned access slowdown.
Performance measurements are included in PR21541 ( http://llvm.org/bugs/show_bug.cgi?id=21541 ).
Differential Revision: http://reviews.llvm.org/D6355
llvm-svn: 222544
This is a first step for generating SSE rcp instructions for reciprocal
calcs when fast-math allows it. This is very similar to the rsqrt optimization
enabled in D5658 ( http://reviews.llvm.org/rL220570 ).
For now, be conservative and only enable this for AMD btver2 where performance
improves significantly both in terms of latency and throughput.
We may never enable this codegen for Intel Core* chips because the divider circuits
are just too fast. On SandyBridge, divss can be as fast as 10 cycles versus the 21
cycle critical path for the rcp + mul + sub + mul + add estimate.
Follow-on patches may allow configuration of the number of Newton-Raphson refinement
steps, add AVX512 support, and enable the optimization for more chips.
More background here: http://llvm.org/bugs/show_bug.cgi?id=21385
Differential Revision: http://reviews.llvm.org/D6175
llvm-svn: 221706
This patch adds 'FeatureSlowSHLD' to 'bdver3'.
According to the official AMD optimization guide for amdfam15: "Using
alternative code in place of SHLD achieves lower overall latency and
requires fewer execution resources. The 32-bit and 64-bit forms of
ADD, ADC, SHR, and LEA (except 16-bit form) are DirectPath
instructions, while SHLD is a VectorPath instruction."
This patch also explicitly sets feature AVX and SSE4A for all the bdver*
cpus. This part of the patch is a non-functional change and it is mainly
done for clarity reasons (Both XOP and FMA4 already imply AVX and SSE4A).
llvm-svn: 221296
This is a first step for generating SSE rsqrt instructions for
reciprocal square root calcs when fast-math is allowed.
For now, be conservative and only enable this for AMD btver2
where performance improves significantly - for example, 29%
on llvm/projects/test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c
(if we convert the data type to single-precision float).
This patch adds a two constant version of the Newton-Raphson
refinement algorithm to DAGCombiner that can be selected by any target
via a parameter returned by getRsqrtEstimate()..
See PR20900 for more details:
http://llvm.org/bugs/show_bug.cgi?id=20900
Differential Revision: http://reviews.llvm.org/D5658
llvm-svn: 220570
This is a first pass at a scheduling model for Jaguar.
It's structured largely on the existing SandyBridge and SLM sched models.
Using this model, in addition to turning on the PostRA scheduler, results in
some perf wins on internal and 3rd party benchmarks. There's not much difference
in LLVM's test-suite benchmarking subset of tests.
Differential Revision: http://reviews.llvm.org/D5229
llvm-svn: 217457
This allows assembling the two new instructions, encls and enclu for the
SKX processor model.
Note the diffs are a bigger than what might think, but to fit the new
MRM_CF and MRM_D7 in things in the right places things had to be
renumbered and shuffled down causing a bit more diffs.
rdar://16228228
llvm-svn: 214460
According to Intel Software Optimization Manual
on Silvermont INC or DEC instructions require
an additional uop to merge the flags.
As a result, a branch instruction depending
on an INC or a DEC instruction incurs a 1 cycle penalty.
Differential Revision: http://reviews.llvm.org/D3990
llvm-svn: 210466
According to Intel Software Optimization Manual on Silvermont in some cases LEA
is better to be replaced with ADD instructions:
"The rule of thumb for ADDs and LEAs is that it is justified to use LEA
with a valid index and/or displacement for non-destructive destination purposes
(especially useful for stack offset cases), or to use a SCALE.
Otherwise, ADD(s) are preferable."
Differential Revision: http://reviews.llvm.org/D3826
llvm-svn: 209198
default architecture for reasonable modern x86 processors, actually be
modern. This processor model should essentially be "tuned" for modern
x86 chips as much as possible without undue penalties on any specific
architecture. Previously we weren't even using the nice scheduling
models. There are a few other tweaks needed here, but this change at
least I have benchmarked across a decent swatch of chips (intel's
clovertown, westmere, and sandybridge; amd's istanbul) and seen no
significant regressions.
If anyone has suggested ways to test this, just let me know. Somewhat
alarmingly, no existing tests failed.
llvm-svn: 208230
This is not really expected to work right yet. Mostly because we will
still emit the OpSize (0x66) prefix in all the wrong places, along with
a number of other corner cases. Those will all be fixed in the subsequent
commits.
Patch from David Woodhouse.
llvm-svn: 198584
AMD's processors family K7, K8, K10, K12, K15 and K16 are known to have SHLD/SHRD instructions with very poor latency. Optimization guides for these processors recommend using an alternative sequence of instructions. For these AMD's processors, I disabled folding (or (x << c) | (y >> (64 - c))) when we are not optimizing for size.
It might be beneficial to disable this folding for some of the Intel's processors. However, since I couldn't find specific recommendations regarding using SHLD/SHRD instructions on Intel's processors, I haven't disabled this peephole for Intel.
llvm-svn: 195383
bulldozer and piledriver. Support for the instruction itself seems to have
already been added in r178040.
Differential Revision: http://llvm-reviews.chandlerc.com/D1933
llvm-svn: 192828
Implements Instruction scheduler latencies for Silvermont,
using latencies from the Intel Silvermont Optimization Guide.
Auto detects SLM.
Turns on post RA scheduler when generating code for SLM.
llvm-svn: 190717
Add basic assembly/disassembly support for the first Intel SHA
instruction 'sha1rnds4'. Also includes feature flag, and test cases.
Support for the remaining instructions will follow in a separate patch.
llvm-svn: 190611
latency for certain models of the Intel Atom family, by converting
instructions into their equivalent LEA instructions, when it is both
useful and possible to do so.
llvm-svn: 180573
variant/dialect. Addresses a FIXME in the emitMnemonicAliases function.
Use and test case to come shortly.
rdar://13688439 and part of PR13340.
llvm-svn: 179804
indirect through a memory address is to load the memory address into
a register and then call indirect through the register.
This patch implements this improvement by modifying SelectionDAG to
force a function address which is a memory reference to be loaded
into a virtual register.
Patch by Sriram Murali.
llvm-svn: 178171