Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first several times this was committed (e.g. r229831, r233055), it caused several buildbot failures.
Apparently the reason for most failures was both clang and gcc's inability to deal with large numbers (> 10K) of bitset constructor calls in tablegen-generated initializers of instruction info tables.
This should now be fixed.
llvm-svn: 238192
Previously, they were forced to immediately follow the actual branch
instruction. This was usually OK (the LEAs actually accessing them got emitted
nearby, and weren't usually separated much afterwards). Unfortunately, a
sufficiently nasty phi elimination dumps many instructions right before the
basic block terminator, and this can increase the range too much.
This patch frees them up to be placed as usual by the constant islands pass,
and consequently has to slightly modify the form of TBB/TBH tables to refer to
a PC-relative label at the final jump. The other jump table formats were
already position-independent.
rdar://20813304
llvm-svn: 237590
There's no need to manually pass modifier strings around to tell an operand how
to print now, that information is encoded in the operand itself since the MC
layer came along.
llvm-svn: 237295
We were creating and propagating two separate indices for each jump table (from
back in the mists of time). However, the generic index used by other backends
is sufficient to emit a unique symbol so this was unneeded.
llvm-svn: 237294
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first two times this was committed (r229831, r233055), it caused several buildbot failures.
At least some of the ARM and MIPS ones were due to gcc/binutils issues, and should now be fixed.
llvm-svn: 237234
sys/time.h on Solaris (and possibly other systems) defines "SEC" as "1"
using a cpp macro. The result is that this fails to compile.
Fixes https://llvm.org/PR23482
llvm-svn: 237112
This new class in a global context contain arch-specific knowledge in order
to provide LLVM libraries, tools and projects with the ability to understand
the architectures. For now, only FPU, ARCH and ARCH extensions on ARM are
supported.
Current behaviour it to parse from free-text to enum values and back, so that
all users can share the same parser and codes. This simplifies a lot both the
ASM/Obj streamers in the back-end (where this came from), and the front-end
parsers for command line arguments (where this is going to be used next).
The previous implementation, using .def/.h includes is deprecated due to its
inflexibility to be built without the backend support and for being too
cumbersome. As more architectures join this scheme, and as more features of
such architectures are added (such as hardware features, type sizes, etc) into
a full blown TargetDescription class, having a set of classes is the most
sane implementation.
The ultimate goal of this refactor both LLVM's and Clang's target description
classes into one unique interface, so that we can de-duplicate and standardise
the descriptions, as well as make it available for other front-ends, tools,
etc.
The FPU parsing for command line options in Clang has been converted to use
this new library and a number of aliases were added for compatibility:
* A bogus neon-vfpv3 alias (neon defaults to vfp3)
* armv5/v6
* {fp4/fp5}-{sp/dp}-d16
Next steps:
* Port Clang's ARCH/EXT parsing to use this library.
* Create a TableGen back-end to generate this information.
* Run this TableGen process regardless of which back-ends are built.
* Expose more information and rename it to TargetDescription.
* Continue re-factoring Clang to use as much of it as possible.
llvm-svn: 236900
v8.1a is renamed to architecture, following current entity naming approach.
Excess generic cpu is removed. Intended use: "generic" cpu with "v8.1a" subtarget feature
Reviewers: jmolloy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8767
llvm-svn: 233811
This reverts commit r233055.
It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.
llvm-svn: 233068
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first time this was committed (r229831), it caused several buildbot failures.
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.
Differential Revision: http://reviews.llvm.org/D8542
llvm-svn: 233055
The code this patch removes was there to make sure the text sections went
before the dwarf sections. That is necessary because MachO uses offsets
relative to the start of the file, so adding a section can change relaxations.
The dwarf sections were being printed at the start just to produce symbols
pointing at the start of those sections.
The underlying issue was fixed in r231898. The dwarf sections are now printed
when they are about to be used, which is after we printed the text sections.
To make sure we don't regress, the patch makes the MachO streamer assert
if CodeGen puts anything unexpected after the DWARF sections.
llvm-svn: 232842
In case of "krait" CPU, asm printer doesn't emit any ".cpu" so the
features bits are not computed. This patch lets the asm printer
emit ".cpu cortex-a9" directive for krait and the hwdiv feature is
enabled through ".arch_extension". In short, krait is treated
as "cortex-a9" with hwdiv. We can not emit ".krait" as CPU since
it is not supported bu GNU GAS yet
llvm-svn: 230651
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
llvm-svn: 229831
initialization. Initialize the subtarget once per function and
migrate Emit{Start|End}OfAsmFile to either use attributes on the
TargetMachine or get information from the subtarget we'd use
for assembling. One bit (getISAEncoding) touched the general
AsmPrinter and the debug output. Handle this one by passing
the function for the subprogram down and updating all callers
and users.
The top-level-ness of the ARM attribute output for assembly is,
by nature, contrary to how we'd want to do this for an LTO
situation where we have multiple cpu architectures so this
solution is good enough for now.
llvm-svn: 229528
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
Claim conformance to version 2.09 of the ARM ABI.
This build attribute must be emitted first amongst the build attributes when
written to an object file. This is to simplify conformance detection by
consumers.
Change-Id: If9eddcfc416bc9ad6e5cc8cdcb05d0031af7657e
llvm-svn: 225166
The __fp16 type is unconditionally exposed. Since -mfp16-format is not yet
supported, there is not a user switch to change this behaviour. This build
attribute should capture the default behaviour of the compiler, which is to
expose the IEEE 754 version of __fp16.
When -mfp16-format is emitted, that will be the way to control the value of
this build attribute.
Change-Id: I8a46641ff0fd2ef8ad0af5f482a6d1af2ac3f6b0
llvm-svn: 224115
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
The test file test/CodeGen/ARM/build-attributes.ll was missing several
floating-point build attribute tests. The intention of this commit is that for
each CPU / architecture currently tested, there are now tests that make sure
the following attributes are sufficiently checked,
* Tag_ABI_FP_rounding
* Tag_ABI_FP_denormal
* Tag_ABI_FP_exceptions
* Tag_ABI_FP_user_exceptions
* Tag_ABI_FP_number_model
Also in this commit, the -unsafe-fp-math flag has been augmented with the full
suite of flags Clang sends to LLVM when you pass -ffast-math to Clang. That is,
`-unsafe-fp-math' has been changed to `-enable-unsafe-fp-math -disable-fp-elim
-enable-no-infs-fp-math -enable-no-nans-fp-math -fp-contract=fast'
Change-Id: I35d766076bcbbf09021021c0a534bf8bf9a32dfc
llvm-svn: 223454
So there are a couple of issues with indirect calls on thumbv4t. First, the most
'obvious' instruction, 'blx' isn't available until v5t. And secondly, the
next-most-obvious sequence: 'mov lr, pc; bx rN' doesn't DTRT in thumb code
because the saved off pc has its thumb bit cleared, so when the callee returns
we end up in ARM mode.... yuck.
The solution is to 'bl' to a nearby landing pad with a 'bx rN' in it.
We could cut down on code size by sharing the landing pads between call sites
that are close enough, but for the moment let's do correctness first and look at
performance later.
Patch by: Iain Sandoe
http://reviews.llvm.org/D6519
llvm-svn: 223380
LLVM understands a -enable-sign-dependent-rounding-fp-math codegen option. When
the user has specified this option, the Tag_ABI_FP_rounding attribute should be
emitted with value 1. This option currently does not appear to disable
transformations and optimizations that assume default floating point rounding
behavior, AFAICT, but the intention should be recorded in the build attributes,
regardless of what the compiler actually does with the intention.
Change-Id: If838578df3dc652b6f2796b8d152545674bcb30e
llvm-svn: 223218
The default ARM floating-point mode does not support IEEE 754 mode exactly. Of
relevance to this patch is that input denormals are flushed to zero. The way in
which they're flushed to zero depends on the architecture,
* For VFPv2, it is implementation defined as to whether the sign of zero is
preserved.
* For VFPv3 and above, the sign of zero is always preserved when a denormal
is flushed to zero.
When FP support has been disabled, the strategy taken by this patch is to
assume the software support will mirror the behaviour of the hardware support
for the target *if it existed*. That is, for architectures which can only have
VFPv2, it is assumed the software will flush to positive zero. For later
architectures it is assumed the software will flush to zero preserving sign.
Change-Id: Icc5928633ba222a4ba3ca8c0df44a440445865fd
llvm-svn: 223110
Creating tests for the ConstantIslands pass is very difficult, since it depends
on precise layout details. Having the ability to precisely inject a number of
bytes into the stream helps greatly.
llvm-svn: 221903
The Cortex-M7 has 3 options for its FPU: none, FPv5-SP-D16 and
FPv5-DP-D16. FPv5 has the same instructions as FP-ARMv8, so it can be
modelled using the same target feature, and all double-precision
operations are already disabled by the fp-only-sp target features.
llvm-svn: 218747
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
assembly instructions.
This is necessary to ensure ARM assembler switches to Thumb mode before it
starts assembling the file level inline assembly instructions at the beginning
of a .s file.
<rdar://problem/17757232>
llvm-svn: 213924
Add support for tracking DLLImport storage class information on a per symbol
basis in the ARM instruction selection. Use that information to correctly
mangle the symbol (dllimport symbols are referenced via *__imp_<name>).
llvm-svn: 212430
Ensure that all paths that retrieve the symbol name go through GetARMGVSymbol
rather than getSymbol. This is desirable so that any global symbol mangling can
be centralised to this function. The motivation for this is handling of symbols
that are marked as having dll import dll storage. Such a symbol requires an
extra load that is currently handled in the backend and a __imp_ prefix on the
symbol name.
llvm-svn: 212429
Emit the COFF header when printing out the function. This is important as the
header contains two important pieces of information: the storage class for the
symbol and the symbol type information. This bit of information is required for
the linker to correctly identify the type of symbol that it is dealing with.
llvm-svn: 207613